92 research outputs found
Head Pose Estimation Using a Texture Model Based on Gabor Wavelets
International audienceNo abstrac
Abnormal Event Detection in Real Time Video
This paper describes an approach to detect abnormal mo- tion in videos. The core of the approach detects portion of video that corresponds to sudden changes of motion vari- ations of a set of de¯ned points of interest. Optical °ow technique tracks those points of interest. There are su±- cient variations in the optical °ow patterns in a mob scene when there are cases those showing abnormalities. The geo- metric clustering algorithm, k-means, clusters the obtained optical °ow information to get the distance between two consecutive frames. In general, comparatively high distance indicates abnormal motion. To demonstrate the interest of the approach, we present the results based on the detection of abnormal motions in video, which consists of both normal and abnormal motions
State of art in Body Tracking
Definition: body tracking is the process of capturing the large body movements, of a subject (person) at some resolution. What is not covered by the above definition is small scale body movements such as facial expressions and hand gestures. Body tracking is used both when the subject is viewed as a single object and when viewed as articulated motion of a high degree of freedom skeleton structure with
Estimation du regard dans un environnement contrÎlé
L objectif principal de mon travail de thĂšse est l extraction de la direction du regard (attention visuelle) d une personne Ă partir de la vidĂ©o. Cette analyse est effectuĂ©e dans un environnement composĂ© d une scĂšne cible et d une zone d observation. La scĂšne cible est une rĂ©gion d intĂ©rĂȘt dĂ©finie pour ĂȘtre analysĂ©e (e.g. un Ă©cran plasma large, une image projetĂ©e sur un mur, une affiche publicitaire, un linĂ©aire dans un magasin, ou la vitrine d un magasin). La zone surveillĂ©e quant Ă elle est l emplacement d oĂč les personnes regardent la scĂšne cible (e.g. la rue, un couloir ou bien les allĂ©es d un supermarchĂ©). Les connaissances qui sont extraites sont alors utilisĂ©es pour comprendre le comportement visuel de personnes ainsi que pour la rĂ©organisation de la scĂšne cible. Pour atteindre cet objectif, nous proposons une approche basĂ©e sur l estimation de l orientation de la tĂȘte et la projection du champ visuel pour localiser la rĂ©gion d intĂ©rĂȘt. Nous avons utilisĂ© une mĂ©thode d estimation de l orientation de la tĂȘte basĂ©e sur l apparence globale et sur un modĂšle cylindrique, et une mĂ©thode de projection gĂ©omĂ©trique pour extraire les rĂ©gions d intĂ©rĂȘts basĂ©e sur les donnĂ©es physiologiques de la vision humaine. L analyse du comportement visuel des personnes a Ă©tĂ© effectuĂ©e Ă l aide d un ensemble de mĂ©triques. Les mĂ©thodes proposĂ©es ont Ă©tĂ© validĂ©es sur des donnĂ©es vidĂ©os et images.The aim of this thesis is to analyze the behaviour of the people passing in front of a target scene. We consider an environment composed of a so-called target scene (a specific scene under analysis, such as a large plasma screen, a projected image, an advertising poster, a shop window, etc.) and a monitored area (place from which people look at the target scene, such as a street or shopping mall). Computer vision provides promising techniques enabling to obtain such information by analyzing videos captured by cameras monitoring this area. Such information are useful in order to simplify technologies that uses the output of the studies about a target scene. In this thesis, we propose an approach that estimates the visual gaze of a person in a controlled environment. The visual gaze of a person is estimated from the head pose. It is followed by its projection on the target scene that allows to estimate the approximate location of interest. Finally, an analysis of the region of interest allows an accurate explanation of the human activity and interest.LILLE1-Bib. Electronique (590099901) / SudocSudocFranceF
- âŠ