24 research outputs found
Accuracy of the discharge destination field in administrative data for identifying transfer to a long-term acute care hospital
<p>Abstract</p> <p>Background</p> <p>Long-term acute care hospitals (LTACs) provide specialized care for patients recovering from severe acute illness. In order to facilitate research into LTAC utilization and outcomes, we studied whether or not the discharge destination field in administrative data accurately identifies patients transferred to an LTAC following acute care hospitalization.</p> <p>Findings</p> <p>We used the 2006 hospitalization claims for United States Medicare beneficiaries to examine the performance characteristics of the discharge destination field in the administrative record, compared to the reference standard of directly observing LTAC transfers in the claims. We found that the discharge destination field was highly specific (99.7%, 95 percent CI: 99.7% - 99.8%) but modestly sensitive (77.3%, 95 percent CI: 77.0% - 77.6%), with corresponding low positive predictive value (72.6%, 95 percent CI: 72.3% - 72.9%) and high negative predictive value (99.8%, 95 percent CI: 99.8% - 99.8%). Sensitivity and specificity were similar when limiting the analysis to only intensive care unit patients and mechanically ventilated patients, two groups with higher rates of LTAC utilization. Performance characteristics were slightly better when limiting the analysis to Pennsylvania, a state with relatively high LTAC penetration.</p> <p>Conclusions</p> <p>The discharge destination field in administrative data can result in misclassification when used to identify patients transferred to long-term acute care hospitals. Directly observing transfers in the claims is the preferable method, although this approach is only feasible in identified data.</p
A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay
<p>Abstract</p> <p>Background</p> <p>Patients with a prolonged intensive care unit (ICU) length of stay account for a disproportionate amount of resource use. Early identification of patients at risk for a prolonged length of stay can lead to quality enhancements that reduce ICU stay. This study developed and validated a model that identifies patients at risk for a prolonged ICU stay.</p> <p>Methods</p> <p>We performed a retrospective cohort study of 343,555 admissions to 83 ICUs in 31 U.S. hospitals from 2002-2007. We examined the distribution of ICU length of stay to identify a threshold where clinicians might be concerned about a prolonged stay; this resulted in choosing a 5-day cut-point. From patients remaining in the ICU on day 5 we developed a multivariable regression model that predicted remaining ICU stay. Predictor variables included information gathered at admission, day 1, and ICU day 5. Data from 12,640 admissions during 2002-2005 were used to develop the model, and the remaining 12,904 admissions to internally validate the model. Finally, we used data on 11,903 admissions during 2006-2007 to externally validate the model.</p> <p>Results</p> <p>The variables that had the greatest impact on remaining ICU length of stay were those measured on day 5, not at admission or during day 1. Mechanical ventilation, PaO<sub>2</sub>: FiO<sub>2 </sub>ratio, other physiologic components, and sedation on day 5 accounted for 81.6% of the variation in predicted remaining ICU stay. In the external validation set observed ICU stay was 11.99 days and predicted total ICU stay (5 days + day 5 predicted remaining stay) was 11.62 days, a difference of 8.7 hours. For the same patients, the difference between mean observed and mean predicted ICU stay using the APACHE day 1 model was 149.3 hours. The new model's r<sup>2 </sup>was 20.2% across individuals and 44.3% across units.</p> <p>Conclusions</p> <p>A model that uses patient data from ICU days 1 and 5 accurately predicts a prolonged ICU stay. These predictions are more accurate than those based on ICU day 1 data alone. The model can be used to benchmark ICU performance and to alert physicians to explore care alternatives aimed at reducing ICU stay.</p