6,356 research outputs found
Nitrate Sources in the Old Ausable River Channel and Adjacent Aquifers in Pinery Provincial Park, Ontario Canada
The Old Ausable River Channel (OARC) is located parallel to the shoreline of Lake Huron between the towns of Grand Bend and Port Franks, Ontario, Canada. Largely isolated from other water bodies, OARC water levels are mostly maintained by shallow groundwater. It is periodically in a state of eutrophication; a state commonly attributed to local anthropogenic nitrate loading. The primary goal of this work is to identify and quantify the sources of nitrate in the OARC watershed by measuring the oxygen and nitrogen isotope compositions of nitrate.
We have developed a dual method approach to measure the δ15N, δ18O and Δ17O of nitrate at low concentrations. This approach is necessary to fully correct for mass interferences, scale compression, and oxygen isotope exchange with water.
We measured the spatial and temporal variations of nitrate isotopic compositions and concentrations within, and contributing to, the OARC watershed waters and precipitation in a multi-year monthly sampling and analysis program. We use these data and Bayesian modeling techniques to quantify nitrate source contributions to the OARC and the adjacent ground waters. We show that the Northeastern portion of the river channel is contaminated by septic effluent. Nitrate produced in the atmosphere is the single largest source of nitrate in the central portion of the OARC; these results highlight the potential importance of regional transport of anthropogenic nitrate. The Southwestern portion of the OARC exhibits elevated atmospheric nitrate loading but receives a periodic influx from the Ausable River Cut water that is contaminated by agricultural run-off. These results can be used to guide watershed management, in particular, of wastewater effluent in Grand Bend and wastewater treatment in Pinery Provincial Park.
We compared nitrate isotopes in precipitation from Pinery Provincial Park and London, Ontario. Nitrate nitrogen isotope compositions at both sites overlapped known ranges for vehicular-emitted NOx. For London, oscillations in nitrate nitrogen isotope compositions are attributable to seasonal fluctuations in soil and anthropogenic emissions. Pinery Provincial Park precipitation exhibits irregular nitrogen isotope oscillations that may reflect its location distal from upwind anthropogenic emissions. The oxygen isotope compositions of nitrate in precipitation at Pinery Provincial Park and London, Ontario, exhibit oscillations that arise from seasonal variations in atmospheric oxidation pathways
Structure-property-function relationships in triple helical collagen hydrogels
In order to establish defined biomimetic systems, type I collagen was functionalised with 1,3-Phenylenediacetic acid (Ph) as aromatic, bifunctional segment. Following investigation on molecular organization and macroscopic properties, material functionalities, i.e. degradability and bioactivity, were addressed, aiming at elucidating the potential of this collagen system as mineralization template. Functionalised collagen hydrogels demonstrated a preserved triple helix conformation. Decreased swelling ratio and increased thermo-mechanical properties were observed in comparison to state-of-the-art carbodiimide (EDC)-crosslinked collagen controls. Ph-crosslinked samples displayed no optical damage and only a slight mass decrease (∼ 4 wt.-%) following 1-week incubation in simulated body fluid (SBF), while nearly 50 wt.-% degradation was observed in EDC-crosslinked collagen. SEM/EDS revealed amorphous mineral deposition, whereby increased calcium phosphate ratio was suggested in hydrogels with increased Ph content. This investigation provides valuable insights for the synthesis of triple helical collagen materials with enhanced macroscopic properties and controlled degradation. In light of these features, this system will be applied for the design of tissue-like scaffolds for mineralized tissue formation
Fabric analysis of allende matrix using EBSD
Accepted versio
In-situ crosslinked wet spun collagen triple helices with nanoscale-regulated ciprofloxacin release capability
The design of antibacterial-releasing coatings or wrapping materials with controlled drug release capability is a promising strategy to minimise risks of infection and medical device failure in vivo. Collagen fibres have been employed as medical device building block, although they still fail to display controlled release capability, competitive wet-state mechanical properties, and retained triple helix organisation. We investigated this challenge by pursuing a multiscale design approach integrating drug encapsulation, in-situ covalent crosslinking and fibre spinning. By selecting ciprofloxacin (Cip) as a typical antibacterial drug, wet spinning was selected as a triple helix-friendly route towards Cip-encapsulated collagen fibres; whilst in–situ crosslinking of fibre-forming triple helices with 1,3–phenylenediacetic acid (Ph) was hypothesised to yield Ph-Cip π-π stacking aromatic interactions and enable controlled drug release. Higher tensile modulus and strength were measured in Ph–crosslinked fibres compared to state-of-the-art carbodiimide–crosslinked controls. Cip-encapsulated Ph-crosslinked fibres revealed decreased elongation at break and significantly-enhanced drug retention in vitro with respect to Cip-free variants and carbodiimide-crosslinked controls, respectively. This multiscale manufacturing strategy provides new insight aiming at wet spun collagen triple helices with nanoscale-regulated tensile properties and drug release capability
Influence of 4-vinylbenzylation on the rheological and swelling properties of photo activated collagen hydrogels
Covalent functionalisation of collagen has been shown to be a promising strategy to adjust the mechanical properties of highly swollen collagen hydrogels. At the same time, secondary interactions between for example, amino acidic terminations or introduced functional groups also play an important role and are often challenging to predict and control. To explore this challenge, 4-vinylbenzyl chloride (4VBC) and methacrylic anhydride (MA) were reacted with type I collagen, and the swelling and rheological properties of resulting photo-activated hydrogel systems investigated. 4VBC-based hydrogels showed significantly increased swelling ratio, in light of the lower degree of collagen functionalisation, with respect to methacrylated collagen networks, whilst rheological storage moduli were found to be comparable between the two systems. To explore the role of benzyl groups in the mechanical properties of the 4VBC-based collagen system, model chemical force microscopy (CFM) was carried out in aqueous environment with an aromatised probe against an aromatised gold-coated glass slide. A marked increase in adhesion force (F: 0.11±0.01 nN) was measured between aromatised samples, compared to the adhesion force observed between the non-modified probe and a glass substrate (F: 2.64±1.82 nN). These results suggest the formation of additional and reversible π-π stacking interactions in aromatic 4VBC-based networks and explain the remarkable rheological properties of this system in comparison to MA-based hydrogels
Biomimetic wet-stable fibres via wet spinning and diacid-based crosslinking of collagen triple helices
One of the limitations of electrospun collagen as bone-like fibrous structure is the potential
collagen triple helix denaturation in the fibre state and the corresponding inadequate wet
stability even after crosslinking. Here, we have demonstrated the feasibility of accomplishing
wet-stable fibres by wet spinning and diacid-based crosslinking of collagen triple helices,
whereby fibre ability to act as bone-mimicking mineralisation system has also been explored.
Circular dichroism (CD) demonstrated nearly complete triple helix retention in resulting wetspun
fibres, and the corresponding chemically crosslinked fibres successfully preserved their
fibrous morphology following 1-week incubation in phosphate buffer solution (PBS). The
presented novel diacid-based crosslinking route imparted superior tensile modulus and
strength to the resulting fibres indicating that covalent functionalization of distant collagen
molecules is unlikely to be accomplished by current state-of-the-art carbodiimide-based
crosslinking. To mimic the constituents of natural bone extra cellular matrix (ECM), the
crosslinked fibres were coated with carbonated hydroxyapatite (CHA) through biomimetic
precipitation, resulting in an attractive biomaterial for guided bone regeneration (GBR), e.g.
in bony defects of the maxillofacial region
Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration
Poly-dl-lactic acid (PDLLA) was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 °C; 5% CO2) in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC) for five weeks. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), Fourier transform infra-red spectroscopy (FTIR) and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory wet stabilities in a humid environment, although chemical crosslinking was essential to ensure long term material cell culture. Scaffolds of PDLLA/collagen at a 60:40 weight ratio provided the greatest stability over a five-week culture period. The PDLLA/collagen scaffolds promoted greater cell proliferation and osteogenic differentiation compared to HMBSCs seeded on the corresponding PDLLA/gelatine scaffolds, suggesting that any electrospinning-induced collagen denaturation did not affect material biofunctionality within 5 weeks in vitro
Use of Remote Camera Traps to Evaluate Animal-Based Welfare Indicators in Individual Free-Roaming Wild Horses
We previously developed a Ten-Stage Protocol for scientifically assessing the welfare of individual free-roaming wild animals using the Five Domains Model. The protocol includes developing methods for measuring or observing welfare indices. In this study, we assessed the use of remote camera traps to evaluate an extensive range of welfare indicators in individual free-roaming wild horses. Still images and videos were collected and analysed to assess whether horses could be detected and identified individually, which welfare indicators could be reliably evaluated, and whether behaviour could be quantitatively assessed. Remote camera trapping was successful in detecting and identifying horses (75% on still images and 72% on video observation events), across a range of habitats including woodlands where horses could not be directly observed. Twelve indicators of welfare across the Five Domains were assessed with equal frequency on both still images and video, with those most frequently assessable being body condition score (73% and 79% of observation events, respectively), body posture (76% for both), coat condition (42% and 52%, respectively), and whether or not the horse was sweating excessively (42% and 45%, respectively). An additional five indicators could only be assessed on video; those most frequently observable being presence or absence of weakness (66%), qualitative behavioural assessment (60%), presence or absence of shivering (51%), and gait at walk (50%). Specific behaviours were identified in 93% of still images and 84% of video events, and proportions of time different behaviours were captured could be calculated. Most social behaviours were rarely observed, but close spatial proximity to other horses, as an indicator of social bonds, was recorded in 36% of still images, and 29% of video observation events. This is the first study that describes detailed methodology for these purposes. The results of this study can also form the basis of application to other species, which could contribute significantly to advancing the field of wild animal welfare
- …