588 research outputs found
NetPyNE, a tool for data-driven multiscale modeling of brain circuits.
Biophysical modeling of neuronal networks helps to integrate and interpret rapidly growing and disparate experimental datasets at multiple scales. The NetPyNE tool (www.netpyne.org) provides both programmatic and graphical interfaces to develop data-driven multiscale network models in NEURON. NetPyNE clearly separates model parameters from implementation code. Users provide specifications at a high level via a standardized declarative language, for example connectivity rules, to create millions of cell-to-cell connections. NetPyNE then enables users to generate the NEURON network, run efficiently parallelized simulations, optimize and explore network parameters through automated batch runs, and use built-in functions for visualization and analysis - connectivity matrices, voltage traces, spike raster plots, local field potentials, and information theoretic measures. NetPyNE also facilitates model sharing by exporting and importing standardized formats (NeuroML and SONATA). NetPyNE is already being used to teach computational neuroscience students and by modelers to investigate brain regions and phenomena
Working Memory Cells' Behavior May Be Explained by Cross-Regional Networks with Synaptic Facilitation
Neurons in the cortex exhibit a number of patterns that correlate with working memory. Specifically, averaged across trials of working memory tasks, neurons exhibit different firing rate patterns during the delay of those tasks. These patterns include: 1) persistent fixed-frequency elevated rates above baseline, 2) elevated rates that decay throughout the tasks memory period, 3) rates that accelerate throughout the delay, and 4) patterns of inhibited firing (below baseline) analogous to each of the preceding excitatory patterns. Persistent elevated rate patterns are believed to be the neural correlate of working memory retention and preparation for execution of behavioral/motor responses as required in working memory tasks. Models have proposed that such activity corresponds to stable attractors in cortical neural networks with fixed synaptic weights. However, the variability in patterned behavior and the firing statistics of real neurons across the entire range of those behaviors across and within trials of working memory tasks are typical not reproduced. Here we examine the effect of dynamic synapses and network architectures with multiple cortical areas on the states and dynamics of working memory networks. The analysis indicates that the multiple pattern types exhibited by cells in working memory networks are inherent in networks with dynamic synapses, and that the variability and firing statistics in such networks with distributed architectures agree with that observed in the cortex
Circulating microRNAs Reveal Time Course of Organ Injury in a Porcine Model of Acetaminophen-Induced Acute Liver Failure
Acute liver failure is a rare but catastrophic condition which can progress rapidly to multi-organ failure. Studies investigating the onset of individual organ injury such as the liver, kidneys and brain during the evolution of acute liver failure, are lacking. MicroRNAs are short, non-coding strands of RNA that are released into the circulation following tissue injury. In this study, we have characterised the release of both global microRNA and specific microRNA species into the plasma using a porcine model of acetaminophen-induced acute liver failure. Pigs were induced to acute liver failure with oral acetaminophen over 19h±2h and death occurred 13h±3h thereafter. Global microRNA concentrations increased 4h prior to acute liver failure in plasma (P<0.0001) but not in isolated exosomes, and were associated with increasing plasma levels of the damage-associated molecular pattern molecule, genomic DNA (P<0.0001). MiR122 increased around the time of onset of acute liver failure (P<0.0001) and was associated with increasing international normalised ratio (P<0.0001). MiR192 increased 8h after acute liver failure (P<0.0001) and was associated with increasing creatinine (P<0.0001). The increase in miR124-1 occurred concurrent with the pre-terminal increase in intracranial pressure (P<0.0001) and was associated with decreasing cerebral perfusion pressure (P<0.002)
A quantitative thermal analysis of cyclists’ thermo-active base layers
It is well known that clothes used in sporting activity are a barrier for heat exchange between the environment and athlete,
which should help in thermoregulation improvement. However, it is difficult to evaluate which top is best for each athlete
according to the characteristics of the sport. Researchers have tried to measure the athlete’s temperature distribution during
exercise at the base layers of tops with different approaches. The aim of this case study was to investigate the use of
thermography for thermo-active base layer evaluation. Six new base layers were measured on one cyclist volunteer during
a progressive training on a cycloergometer. As a control condition, the skin temperature of the same volunteer was
registered without any layer with the same training. A training protocol was selected approximate to cycling race, which
started from the warm-up stage, next the progressive effort until the race finished and at the end ‘‘cool-down’’ stage was
over. In order to show which layer provided the strongest and weakest barrier for heat exchange in comparison with
environment, the temperature parameters were taken into consideration. The most important parameter in the studies was
the temperature difference between the body and the layers, which was changing during the test time. The studies showed a
correlation between the ergometer power parameter and the body temperature changes, which has a strong and significant
value. Moreover, the mass of every layer was checked before and after the training to evaluate the mass of the sweat
exuded during the test. From this data, the layer mass difference parameter was calculated and taken into consideration as a
parameter, which may correspond with the mean heart rate value from each training. A high and positive correlation
coefficient was obtained between the average heart rate and the mass difference for the base layers. Thermal analysis seems
to have a new potential application in the objective assessment of sports clothing and may help in choosing the proper
clothes, which could support heat transfer during exercising and protect the body from overheating
A pilot study for augmenting atomoxetine with methylphenidate: safety of concomitant therapy in children with attention-deficit/hyperactivity disorder
<p>Abstract</p> <p>Background</p> <p>This study examined augmenting atomoxetine with extended-release methylphenidate in children whose attention-deficit/hyperactivity disorder (ADHD) previously failed to respond adequately to stimulant medication.</p> <p>Methods</p> <p>Children with ADHD and prior stimulant treatment (<it>N </it>= 25) received atomoxetine (1.2 mg/kg/day) plus placebo. After 4 weeks, patients who were responders (<it>n </it>= 4) were continued on atomoxetine/placebo while remaining patients were randomly assigned to either methylphenidate (ATX/MPH) (1.1 mg/kg/day) or placebo augmentation (ATX/PB) for another 6 weeks. Patients and sites were blind to timing of active augmentation. Safety measures included vital signs, weight, and adverse events. Efficacy was assessed by ADHD rating scales.</p> <p>Results</p> <p>Categorical increases in vital signs occurred for 5 patients (3 patients in ATX/MPH, 2 patients in ATX/PBO). Sixteen percent discontinued the study due to AE, but no difference between augmentation groups. Atomoxetine treatment was efficacious on outcome measures (<it>P </it>≤ .001), but methylphenidate did not enhance response.</p> <p>Conclusion</p> <p>Methylphenidate appears to be safely combined with atomoxetine, but conclusions limited by small sample. With atomoxetine treatment, 43% of patients achieved normalization on ADHD ratings.</p
The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.
Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex
Phase III randomized trial of sunitinib versus capecitabine in patients with previously treated HER2-negative advanced breast cancer
This multicenter, randomized, open-label phase III trial (planned enrollment: 700 patients) was conducted to test the hypothesis that single-agent sunitinib improves progression-free survival (PFS) compared with capecitabine as treatment for advanced breast cancer (ABC). Patients with HER2-negative ABC that recurred after anthracycline and taxane therapy were randomized (1:1) to sunitinib 37.5 mg/day or capecitabine 1,250 mg/m2 (1,000 mg/m2 in patients >65 years) BID on days 1–14 q3w. The independent data-monitoring committee (DMC) determined during the first interim analysis (238 patients randomized to sunitinib, 244 to capecitabine) that the trial be terminated due to futility in reaching the primary endpoint. No statistical evidence supported the hypothesis that sunitinib improved PFS compared with capecitabine (one-sided P = 0.999). The data indicated that PFS was shorter with sunitinib than capecitabine (median 2.8 vs. 4.2 months, respectively; HR, 1.47; 95% CI, 1.16–1.87; two-sided P = 0.002). Median overall survival (15.3 vs. 24.6 months; HR, 1.17; two-sided P = 0.350) and objective response rates (11 vs. 16%; odds ratio, 0.65; P = 0.109) were numerically inferior with sunitinib versus capecitabine. While no new or unexpected safety findings were reported, sunitinib treatment was associated with higher frequencies and greater severities of many common adverse events (AEs) compared with capecitabine, resulting in more temporary discontinuations due to AEs with sunitinib (66 vs. 51%). The relative dose intensity was lower with sunitinib than capecitabine (73 vs. 95%). Based on these efficacy and safety results, sunitinib should not be used as monotherapy for patients with ABC
Aldehyde Dehydrogenase (ALDH) Activity Does Not Select for Cells with Enhanced Aggressive Properties in Malignant Melanoma
Malignant melanoma is an exceptionally aggressive, drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common, but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation, i.e. cancer stem cells (CSC), exists in malignant melanoma. Rather, it is suggested that multiple cell populations are implicated in initiation and progression of the disease, making it of importance to identify subpopulations with elevated aggressive properties.. Furthermore, both subpopulations showed similar sensitivity to the anti-melanoma drugs, dacarbazine and lexatumumab.These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells, implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma, and arguing against ALDH as a “universal” marker. Besides, it was shown that the ability to reestablish tumour heterogeneity is not necessarily linked to the more aggressive phenotype
Plasma MicroRNA Profiles in Rat Models of Hepatocellular Injury, Cholestasis, and Steatosis
MicroRNAs (miRNAs) are small RNA molecules that function to modulate the expression of target genes, playing important roles in a wide range of physiological and pathological processes. The miRNAs in body fluids have received considerable attention as potential biomarkers of various diseases. In this study, we compared the changes of the plasma miRNA expressions by acute liver injury (hepatocellular injury or cholestasis) and chronic liver injury (steatosis, steatohepatitis and fibrosis) using rat models made by the administration of chemicals or special diets. Using miRNA array analysis, we found that the levels of a large number of miRNAs (121–317 miRNAs) were increased over 2-fold and the levels of a small number of miRNAs (6–35 miRNAs) were decreased below 0.5-fold in all models except in a model of cholestasis caused by bile duct ligation. Interestingly, the expression profiles were different between the models, and the hierarchical clustering analysis discriminated between the acute and chronic liver injuries. In addition, miRNAs whose expressions were typically changed in each type of liver injury could be specified. It is notable that, in acute liver injury models, the plasma level of miR-122, the most abundant miRNA in the liver, was more quickly and dramatically increased than the plasma aminotransferase level, reflecting the extent of hepatocellular injury. This study demonstrated that the plasma miRNA profiles could reflect the types of liver injury (e.g. acute/chronic liver injury or hepatocellular injury/cholestasis/steatosis/steatohepatitis/fibrosis) and identified the miRNAs that could be specific and sensitive biomarkers of liver injury
- …