13 research outputs found

    Description of an aerodynamic levitation apparatus with applications in Earth sciences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In aerodynamic levitation, solids and liquids are floated in a vertical gas stream. In combination with CO<sub>2</sub>-laser heating, containerless melting at high temperature of oxides and silicates is possible. We apply aerodynamic levitation to bulk rocks in preparation for microchemical analyses, and for evaporation and reduction experiments.</p> <p>Results</p> <p>Liquid silicate droplets (~2 mm) were maintained stable in levitation using a nozzle with a 0.8 mm bore and an opening angle of 60°. The gas flow was ~250 ml min<sup>-1</sup>. Rock powders were melted and homogenized for microchemcial analyses. Laser melting produced chemically homogeneous glass spheres. Only highly (e.g. H<sub>2</sub>O) and moderately volatile components (Na, K) were partially lost. The composition of evaporated materials was determined by directly combining levitation and inductively coupled plasma mass spectrometry. It is shown that the evaporated material is composed of Na > K >> Si. Levitation of metal oxide-rich material in a mixture of H<sub>2 </sub>and Ar resulted in the exsolution of liquid metal.</p> <p>Conclusions</p> <p>Levitation melting is a rapid technique or for the preparation of bulk rock powders for major, minor and trace element analysis. With exception of moderately volatile elements Na and K, bulk rock analyses can be performed with an uncertainty of ± 5% relative. The technique has great potential for the quantitative determination of evaporated materials from silicate melts. Reduction of oxides to metal is a means for the extraction and analysis of siderophile elements from silicates and can be used to better understand the origin of chondritic metal.</p

    CHEMICAL COMPOSITIONAL STUDY OF 35 IRON-METEORITES AND ITS APPLICATION IN TAXONOMY

    Full text link

    Tubulusfunktionen, Membrantransporte, Harnkonzentrierung und Diureseformen

    Full text link

    Factors influencing corrosion of metal pipes in soils

    Full text link
    Deterioration of buried metal pipes due to corrosive soil environment is a major issue worlwide. Although failures of buried pipe due to corrosive soil is an old problem, yet such failures are still uncontrollable even with the application of advanced corrosion protection technologies. Therefore, understanding factors causing corrosion of buried pipes is necessary. This article reviews factors causing corrosion of buried pipes in soils. Factors include moisture content, soil resistivity, pH, dissolved oxygen, temperature and microbial activity. Moreover, we discuss the influence of manufacturing method and the comparison of corrosion behaviour of cast iron, ductile and mild steel pipes. We found that corrosion rate of pipes increases with moisture contents up to the critical moisture value. Although pH affects corrosion, there is no relationship between corrosion and pH and the corrosion rates of buried pipes are inversely proportional to soil resistivity. Soils containing more organic matter show high resistivity. Dissolved oxygen in soil develops differential cell which accelerates corrosion of metallic pipe. Different types of bacteria present in soil develop biofilms on metallic pipes, which deteriorates pipes with time

    Angiotensin, the Kinins, and Smooth Muscle

    Full text link
    corecore