166 research outputs found

    Development of an invasively monitored porcine model of acetaminophen-induced acute liver failure

    Get PDF
    Background: The development of effective therapies for acute liver failure (ALF) is limited by our knowledge of the pathophysiology of this condition, and the lack of suitable large animal models of acetaminophen toxicity. Our aim was to develop a reproducible invasively-monitored porcine model of acetaminophen-induced ALF. Method: 35kg pigs were maintained under general anaesthesia and invasively monitored. Control pigs received a saline infusion, whereas ALF pigs received acetaminophen intravenously for 12 hours to maintain blood concentrations between 200-300 mg/l. Animals surviving 28 hours were euthanased. Results: Cytochrome p450 levels in phenobarbital pre-treated animals were significantly higher than non pre-treated animals (300 vs 100 pmol/mg protein). Control pigs (n=4) survived 28-hour anaesthesia without incident. Of nine pigs that received acetaminophen, four survived 20 hours and two survived 28 hours. Injured animals developed hypotension (mean arterial pressure; 40.8+/-5.9 vs 59+/-2.0 mmHg), increased cardiac output (7.26+/-1.86 vs 3.30+/-0.40 l/min) and decreased systemic vascular resistance (8.48+/-2.75 vs 16.2+/-1.76 mPa/s/m3). Dyspnoea developed as liver injury progressed and the increased pulmonary vascular resistance (636+/-95 vs 301+/-26.9 mPa/s/m3) observed may reflect the development of respiratory distress syndrome. Liver damage was confirmed by deterioration in pH (7.23+/-0.05 vs 7.45+/-0.02) and prothrombin time (36+/-2 vs 8.9+/-0.3 seconds) compared with controls. Factor V and VII levels were reduced to 9.3 and 15.5% of starting values in injured animals. A marked increase in serum AST (471.5+/-210 vs 42+/-8.14) coincided with a marked reduction in serum albumin (11.5+/-1.71 vs 25+/-1 g/dL) in injured animals. Animals displayed evidence of renal impairment; mean creatinine levels 280.2+/-36.5 vs 131.6+/-9.33 mumol/l. Liver histology revealed evidence of severe centrilobular necrosis with coagulative necrosis. Marked renal tubular necrosis was also seen. Methaemoglobin levels did not rise >5%. Intracranial hypertension was not seen (ICP monitoring), but there was biochemical evidence of encephalopathy by the reduction of Fischer's ratio from 5.6 +/- 1.1 to 0.45 +/- 0.06. Conclusion: We have developed a reproducible large animal model of acetaminophen-induced liver failure, which allows in-depth investigation of the pathophysiological basis of this condition. Furthermore, this represents an important large animal model for testing artificial liver support systems

    Hepatoprotective effects of methanol extract of Carissa opaca leaves on CCl4-induced damage in rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Carissa opaca </it>(Apocynaceae) leaves possess antioxidant activity and hepatoprotective effects, and so may provide a possible therapeutic alternative in hepatic disorders. The effect produced by methanolic extract of <it>Carissa opaca </it>leaves (MCL) was investigated on CCl<sub>4</sub>-induced liver damages in rat.</p> <p>Methods</p> <p>30 rats were divided into five groups of six animals of each, having free access to food and water <it>ad libitum</it>. Group I (control) was given olive oil and DMSO, while group II, III and IV were injected intraperitoneally with CCl<sub>4 </sub>(0.5 ml/kg) as a 20% (v/v) solution in olive oil twice a week for 8 weeks. Animals of group II received only CCl<sub>4</sub>. Rats of group III were given MCL intragastrically at a dose of 200 mg/kg bw while that of group IV received silymarin at a dose of 50 mg/kg bw twice a week for 8 weeks. However, animals of group V received MCL only at a dose of 200 mg/kg bw twice a week for 8 weeks. The activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and γ-glutamyltransferase (γ-GT) were determined in serum. Catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione-S-transferase (GST), glutathione peroxidase (GSH-Px), glutathione reductase (GSR) and quinone reductase (QR) activity was measured in liver homogenates. Lipid peroxidation (thiobarbituric acid reactive substances; TBARS), glutathione (GSH) and hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) concentration was also assessed in liver homogenates. Phytochemicals in MCL were determined through qualitative and high performance liquid chromatography (HPLC) analysis.</p> <p>Results</p> <p>Hepatotoxicity induced with CCl<sub>4 </sub>was evidenced by significant increase in lipid peroxidation (TBARS) and H<sub>2</sub>O<sub>2 </sub>level, serum activities of AST, ALT, ALP, LDH and γ-GT. Level of GSH determined in liver was significantly reduced, as were the activities of antioxidant enzymes; CAT, POD, SOD, GSH-Px, GSR, GST and QR. On cirrhotic animals treated with CCl<sub>4</sub>, histological studies showed centrilobular necrosis and infiltration of lymphocytes. MCL (200 mg/kg bw) and silymarin (50 mg/kg bw) co-treatment prevented all the changes observed with CCl<sub>4</sub>-treated rats. The phytochemical analysis of MCL indicated the presence of flavonoids, tannins, alkaloids, phlobatannins, terpenoids, coumarins, anthraquinones, and cardiac glycosides. Isoquercetin, hyperoside, vitexin, myricetin and kaempherol was determined in MCL.</p> <p>Conclusion</p> <p>These results indicate that MCL has a significant protective effect against CCl<sub>4 </sub>induced hepatotoxicity in rat, which may be due to its antioxidant and membrane stabilizing properties.</p

    Integrated Proteomic and Transcriptomic Investigation of the Acetaminophen Toxicity in Liver Microfluidic Biochip

    Get PDF
    Microfluidic bioartificial organs allow the reproduction of in vivo-like properties such as cell culture in a 3D dynamical micro environment. In this work, we established a method and a protocol for performing a toxicogenomic analysis of HepG2/C3A cultivated in a microfluidic biochip. Transcriptomic and proteomic analyses have shown the induction of the NRF2 pathway and the related drug metabolism pathways when the HepG2/C3A cells were cultivated in the biochip. The induction of those pathways in the biochip enhanced the metabolism of the N-acetyl-p-aminophenol drug (acetaminophen-APAP) when compared to Petri cultures. Thus, we observed 50% growth inhibition of cell proliferation at 1 mM in the biochip, which appeared similar to human plasmatic toxic concentrations reported at 2 mM. The metabolic signature of APAP toxicity in the biochip showed similar biomarkers as those reported in vivo, such as the calcium homeostasis, lipid metabolism and reorganization of the cytoskeleton, at the transcriptome and proteome levels (which was not the case in Petri dishes). These results demonstrate a specific molecular signature for acetaminophen at transcriptomic and proteomic levels closed to situations found in vivo. Interestingly, a common component of the signature of the APAP molecule was identified in Petri and biochip cultures via the perturbations of the DNA replication and cell cycle. These findings provide an important insight into the use of microfluidic biochips as new tools in biomarker research in pharmaceutical drug studies and predictive toxicity investigations

    Prevention of hepatorenal toxicity with Sonchus asper in gentamicin treated rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Sonchus asper </it>possesses antioxidant capacity and is used in liver and kidney disorders. We have investigated the preventive effect of methanolic extract of <it>Sonchus asper </it>(SAME) on the gentamicin induced alterations in biochemical and morphological parameters in liver and kidneys of Sprague-Dawley male rat.</p> <p>Methods</p> <p>Acute oral toxicity studies were performed for selecting the therapeutic dose of SAME. 30 Sprague-Dawley male rats were equally divided into five groups with 06 animals in each. Group I received saline (0.5 ml/kg bw; 0.9% NaCl) while Group II administered with gentamicin 0.5 ml (100 mg/kg bw; i.p.) for ten days. Animals of Group III and Group IV received gentamicin and SAME 0.5 ml at a dose of 100 mg/kg bw and 200 mg/kg bw, respectively while Group V received only SAME at a dose of 200 mg/kg bw. Biochemical parameters including aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), γ-glutamyltransferase (γ-GT), total cholesterol, triglycerides, total protein, albumin, creatinine, blood urea nitrogen (BUN), total bilirubin and direct bilirubin were determined in serum collected from various groups. Urinary out puts were measured in each group and also assessed for the level of protein and glucose. Lipid peroxides (TBARS), glutathione (GSH), DNA injuries and activities of antioxidant enzymes; catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) were determined in liver and renal samples. Histopathological studies of liver and kidneys were also carried out.</p> <p>Results</p> <p>On the basis of acute oral toxicity studies, 2000 mg/kg bw did not induce any toxicity in rats, 1/10<sup>th </sup>of the dose was selected for preventive treatment. Gentamicin increased the level of serum biomarkers; AST, ALT, ALP, LDH, γ-GT, total cholesterol, triglycerides, total protein, albumin, creatinine, BUN, total and direct bilirubin; as were the urinary level of protein, glucose, and urinary output. Lipid peroxidation (TBARS) and DNA injuries increased while GSH contents and activities of antioxidant enzymes; CAT, POD, SOD decreased with gentamicin in liver and kidney samples. SAME administration, dose dependently, prevented the alteration in biochemical parameters and were supported by low level of tubular and glomerular injuries induced with gentamicin.</p> <p>Conclusion</p> <p>These results suggested the preventive role of SAME for gentamicin induced toxicity that could be attributed by phytochemicals having antioxidant and free radical scavenging properties.</p
    corecore