33 research outputs found
Chemical aspects of ocean acidification monitoring in the ICES marine area
It is estimated that oceans absorb approximately a quarter of the total anthropogenic releases of carbon dioxide to the atmosphere each year. This is leading to acidification of the oceans, which has already been observed through direct measurements. These changes in the ocean carbon system are a cause for concern for the future health of marine ecosystems. A coordinated ocean acidification (OA) monitoring programme is needed that integrates physical, biogeochemical, and biological measurements to concurrently observe the variability and trends in ocean carbon chemistry and evaluate species and ecosystems response to these changes. This report arises from an OSPAR request to ICES for advice on this matter. It considers the approach and tools available to achieve coordinated monitoring of changes in the carbon system in the ICES marine area, i.e. the Northeast Atlantic and Baltic Sea. An objective is to measure long-term changes in pH, carbonate parameters, and saturation states (Ωaragonite and Ωcalcite) in support of assessment of risks to and impacts on marine ecosystems. Painstaking and sensitive methods are necessary to measure changes in the ocean carbonate system over a long period of time (decades) against a background of high natural variability. Information on this variability is detailed in this report. Monitoring needs to start with a research phase, which assesses the scale of short-term variability in different regions. Measurements need to cover a range of waters from estuaries and coastal waters, shelf seas and ocean-mode waters, and abyssal waters where sensitive ecosystems may be present. Emphasis should be placed on key areas at risk, for example high latitudes where ocean acidification will be most rapid, and areas identified as containing ecosystems and habitats that may be vulnerable, e.g. cold-water corals. In nearshore environments, increased production resulting from eutrophication has probably driven larger changes in acidity than CO2 uptake. Although the cause is different, data are equally required from these regions to assess potential ecosystem impact. Analytical methods to support coordinated monitoring are in place. Monitoring of at least two of the four carbonate system parameters (dissolved inorganic carbon (DIC), total alkalinity (TA), pCO2, and pH) alongside other parameters is sufficient to describe the carbon system. There are technological limitations to direct measurement of pH at present, which is likely to change in the next five years. DIC and TA are the most widely measured parameters in discrete samples. The parameter pCO2 is the most common measurement made underway. Widely accepted procedures are available, although further development of quality assurance tools (e.g. proficiency testing) is required. Monitoring is foreseen as a combination of low-frequency, repeat, ship-based surveys enabling collection of extended high quality datasets on horizontal and vertical scales, and high-frequency autonomous measurements for more limited parameter sets using instrumentation deployed on ships of opportunity and moorings. Monitoring of ocean acidification can build on existing activities summarized in this report, e.g. OSPAR eutrophication monitoring. This would be a cost-effective approach to monitoring, although a commitment to sustained funding is required. Data should be reported to the ICES data repository as the primary data centre for OSPAR and HELCOM, thus enabling linkages to other related datasets, e.g. nutrients and integrated ecosystem data. The global ocean carbon measurement community reports to the Carbon Dioxide Information Analysis Center (CDIAC), and it is imperative that monitoring data are also reported to this database. Dialogue between data centres to facilitate an efficient “Report-Once” system is necessary
Mechanisms, screening modalities and treatment options for individuals with non‐alcoholic fatty liver disease and type 2 diabetes
Non‐alcoholic fatty liver disease (NAFLD) exists as a spectrum of disease ranging from excessive accumulation of fat within the liver (simple steatosis), inflammation (non‐alcoholic steatohepatitis) through to fibrosis, cirrhosis and end‐stage liver disease. There is also an increased risk of hepatocellular carcinoma. The principal risk factor for NAFLD is overweight or obesity, along with type 2 diabetes, and NAFLD itself is also a risk factor for incident type 2 diabetes. Overweight/obesity is synergistic with alcohol consumption in causing progressive and insidious liver damage. Recent consensus advocates a change in nomenclature from NAFLD to ‘metabolic associated fatty liver disease’ (MAFLD), reflective of the associated metabolic abnormalities (insulin resistance/type 2 diabetes and metabolic syndrome components). Additional extra‐hepatic manifestations of NAFLD include cardiovascular disease, chronic kidney disease and certain cancers. Unlike other micro‐ and macrovascular complications of type 2 diabetes, systematic screening or surveillance protocols have not been widely adopted in routine diabetes care to assess for presence/severity of NAFLD. Various screening tools are available (non‐invasive tests and biochemical indices) combined with imaging techniques (e.g. transient elastography) to detect steatosis and more importantly advanced fibrosis/cirrhosis to facilitate appropriate surveillance. Liver biopsy may be sometimes necessary. Treatment options for type 2 diabetes, including lifestyle interventions (dietary change and physical activity), glucose‐lowering therapies and metabolic surgery, can modulate hepatic steatosis and to a lesser extent fibrosis. Awareness of the impact of liver disease on the choice of glucose‐lowering medications in individuals with type 2 diabetes is also critical
Spatial and temporal variability in nutrient concentrations in Liverpool Bay, a temperate latitude region of freshwater influence
This paper presents data for the temporal and spatial distribution of nutrients in Liverpool Bay between 2003 and 2009 and an analysis of inputs of nutrients from the major rivers. The spatial distribution of winter nutrient concentrations are controlled by the region of freshwater influence (ROFI) in Liverpool Bay through the mixing of riverine freshwater and Irish Sea water, with strong linear relationships between nutrient concentration and salinity between December and February. The location of highest spring and summer phytoplankton biomass reflects the nutrient distributions as controlled by the ROFI. Analysis of 7 years of data showed that the seasonal cycle of winter maximum nutrient concentrations in February and drawdown in April/May is a recurrent feature of this location, with the timing of the drawdown varying by several weeks between years. A comparison of observed nutrient concentrations in Liverpool Bay with those predicted from inputs from rivers has been presented. Nutrient concentrations in the rivers flowing into Liverpool Bay were highly variable and there was reasonable agreement between predicted freshwater nutrient concentrations using data from this study and riverine nutrient concentrations weighted on the basis of river flow, although the exact nature of mixing between the rivers could not be determined. Predicted Irish Sea nutrient concentrations in the winter were lower than those reported for the input waters of the North Atlantic, supporting findings from previous work that nitrogen is lost through denitrification in the Irish Sea
Determination of dissolved nutrients (N P SI) in seawater with high precision and inter-comparability using gas-segmented continuous flow analysers
The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) brings together scientists with interests in physical oceanography, the carbon cycle, marine biogeochemistry and ecosystems, and other users and collectors of ocean interior data to develop a sustained global network of hydrographic sections as part of the Global Ocean Climate Observing System. A series of manuals and guidelines are being produced by GO-SHIP which update those developed by the World Ocean Circulation Experiment (WOCE) in the early 1990s. Analysis of the data collected in WOCE suggests that improvements are needed in the collection of nutrient data if they are to be used for determining change within the ocean interior. Production of this manual is timely as it coincides with the development of reference materials for nutrients in seawater (RMNS). These RMNS solutions will be produced in sufficient quantities and be of sufficient quality that they will provide a basis for improving the consistency of nutrient measurements both within and between cruises.
This manual is a guide to suggested best practice in performing nutrient measurements at sea. It provides a detailed set of advice on laboratory practice for all the procedures surrounding the use of gas-segmented continuous flow analysers (CFA) for the determination of dissolved nutrients (usually ammonium, nitrate, nitrite, phosphate and silicate) at sea. It does not proscribe the use of a particular instrument or related chemical method as these are well described in other publications.
The manual provides a brief introduction to the CFA method, the collection and storage of samples, considerations in the preparation of reagents and the calibrations of the system. It discusses how RMNS solutions can be used to “track” the performance of a system during a cruise and between cruises. It provides a format for the meta-data that need to be reported along side the sample data at the end of a cruise so that the quality of the reported data can be evaluated and set in context relative to other data sets.
Most importantly the central manual is accompanied by a set of nutrient standard operating procedures (NSOPs) that provide detailed information on key procedures that are necessary if best quality data are to be achieved consistently. These cover sample collection and storage, an example NSOP for the use of a CFA system at sea, high precision preparation of calibration solutions, assessment of the true calibration blank, checking the linearity of a calibration and the use of internal and externally prepared reference solutions for controlling the precision of data during a cruise and between cruises. An example meta-data report and advice on the assembly of the quality control and statistical data that should form part of the meta-data report are also given
Seasonal and inter-annual variability in alkalinity in Liverpool Bay (53.5° N, 3.5° W) and in major river inputs to the North Sea
A critical factor controlling changes in the acidity of coastal waters is the alkalinity of the water. Concentrations of alkalinity are determined by supply from rivers and by in situ processes such as biological production and denitrification. A 2-year study based on 15 cruises in Liverpool Bay followed the seasonal cycles of changing concentrations of total alkalinity (TA) and total dissolved inorganic carbon (DIC) in relation to changes caused by the annual cycle of biological production during the mixing of river water into the Bay. Consistent annual cycles in concentrations of nutrients, TA and DIC were observed in both years. At a salinity of 31.5, the locus of primary production during the spring bloom, concentrations of NO x decreased by 25?±?4 ?mol kg?1 and DIC by 106?±?16 ?mol kg?1. Observed changes in TA were consistent with the uptake of protons during primary biological production. Concentrations of TA increased by 33?±?8 ?mol kg?1 (2009) and 33?±?15 ?mol kg?1 (2010). The impact of changes in organic matter on the measured TA appears likely to be small in this area. Thomas et al. (2009) suggested that denitrification may enhance the CO2 uptake of the North Sea by 25%, in contrast we find that although denitrification is a significant process in itself, it does not increase concentrations of TA relative to those of DIC and so does not increase buffer capacity and potential uptake of CO2 into shelf seawaters. For Liverpool Bay historical data suggest that higher concentrations of TA during periods of low flow are likely to contribute in part to the observed change in TA between winter and summer but the appropriate pattern cannot be identified in recent low-frequency river data. On a wider scale, data for the rivers Mersey, Rhine, Elbe and Weser show that patterns of seasonal change in concentrations of TA in river inputs differ between river systems