15,045 research outputs found
A max-type recursive model: some properties and open questions
We consider a simple max-type recursive model which was introduced in the
study of depinning transition in presence of strong disorder, by Derrida and
Retaux. Our interest is focused on the critical regime, for which we study the
extinction probability, the first moment and the moment generating function.
Several stronger assertions are stated as conjectures.Comment: A version accepted to Charles Newman Festschrift (to appear by
Springer
Experimental and modelling study of interaction between friction and galling under contact load change conditions
The galling process remains one of the least understood phenomena in metal forming. The transfer of material from a work-piece onto the tool surface can cause an evolutionary increase in COF and thus the use of a constant COF in FE simulations leads to progressively inaccurate results. For an aluminium work-piece, material transfer, which has history and pressure dependency, is determined by a dynamic balance between the generation and ejection of wear particles acting as a 'third body' abrasive element at the contact interface. To address this dynamic interactive phenomenon, pin-on-disc tests between AA6082 and G3500 were performed under step load change conditions. The COF evolutions, morphologies of the transfer layer and its cross-section were studied. It has been found that contact load change will disequilibrate and rebuild the dynamic balance and high load will increase the generation and ejection rate of third body and vice versa. Moreover, based on the experimental results, an interactive model was developed and presented to simulate the dynamic formation process of the aluminium third body layer under load change conditions, enabling multi-cycle simulations to model the galling distribution and friction variation
Recommended from our members
Registration of the endoluminal surfaces of the colon derived from prone and supine CT colonography
Purpose: Computed tomographic (CT) colonography is a relatively new technique for detecting bowel cancer or potentially precancerous polyps. CT scanning is combined with three-dimensional (3D) image reconstruction to produce a virtual endoluminal representation similar to optical colonoscopy. Because retained fluid and stool can mimic pathology, CT data are acquired with the bowel cleansed and insufflated with gas and patient in both prone and supine positions. Radiologists then match visually endoluminal locations between the two acquisitions in order to determine whether apparent pathology is real or not. This process is hindered by the fact that the colon, essentially a long tube, can undergo considerable deformation between acquisitions. The authors present a novel approach to automatically establish spatial correspondence between prone and supine endoluminal colonic surfaces after surface parameterization, even in the case of local colon collapse.Methods: The complexity of the registration task was reduced from a 3D to a 2D problem by mapping the surfaces extracted from prone and supine CT colonography onto a cylindrical parameterization. A nonrigid cylindrical registration was then performed to align the full colonic surfaces. The curvature information from the original 3D surfaces was used to determine correspondence. The method can also be applied to cases with regions of local colonic collapse by ignoring the collapsed regions during the registration.Results: Using a development set, suitable parameters were found to constrain the cylindrical registration method. Then, the same registration parameters were applied to a different set of 13 validation cases, consisting of 8 fully distended cases and 5 cases exhibiting multiple colonic collapses. All polyps present were well aligned, with a mean (+/- std. dev.) registration error of 5.7 (+/- 3.4) mm. An additional set of 1175 reference points on haustral folds spread over the full endoluminal colon surfaces resulted in an error of 7.7 (+/- 7.4) mm. Here, 82% of folds were aligned correctly after registration with a further 15% misregistered by just onefold.Conclusions: The proposed method reduces the 3D registration task to a cylindrical registration representing the endoluminal surface of the colon. Our algorithm uses surface curvature information as a similarity measure to drive registration to compensate for the large colorectal deformations that occur between prone and supine data acquisitions. The method has the potential to both enhance polyp detection and decrease the radiologist's interpretation time. (C) 2011 American Association of Physicists in Medicine. [DOI: 10.1118/1.3577603
Pancreatic cancer clusters and arsenic-contaminated drinking water wells in Florida
This is the final version of the article. Available from BioMed Central via the DOI in this record.BACKGROUND: We sought to identify high-risk areas of pancreatic cancer incidence, and determine if clusters of persons diagnosed with pancreatic cancer were more likely to be located near arsenic-contaminated drinking water wells. METHODS: A total of 5,707 arsenic samples were collected from December 2000 to May 2008 by the Florida Department of Health, representing more than 5,000 individual privately owned wells. During that period, 0.010 ppm (10 ppb) or greater arsenic levels in private well water were considered as the threshold based on standard of United States Environmental Protection Agency (EPA). Spatial modeling was applied to pancreatic cancer cases diagnosed between 1998-2002 in Florida (n = 11,405). Multivariable logistic regression was used to determine if sociodemographic indicators, smoking history, and proximity to arsenic-contaminated well sites were associated with residence at the time of pancreatic cancer diagnosis occurring within versus outside a cluster. RESULTS: Spatial modeling identified 16 clusters in which 22.6% of all pancreatic cancer cases were located. Cases living within 1 mile of known arsenic-contaminated wells were significantly more likely to be diagnosed within a cluster of pancreatic cancers relative to cases living more than 3 miles from known sites (odds ratio = 2.1 [95% CI = 1.9, 2.4]). CONCLUSIONS: Exposure to arsenic-contaminated drinking water wells may be associated with an increased risk of pancreatic cancer. However, case-control studies are needed in order to confirm the findings of this ecological analysis. These cluster areas may be appropriate to evaluate pancreatic cancer risk factors, and to perform targeted screening and prevention studies.The project was supported by grants from the James and Esther King Biomedical Research Foundation (#06TSP); the Bankhead-Coley Cancer Research Program (#1BG06-341963, #08BN-03), the Florida Department of Health (FDOH); the CDC National Program of Cancer Registries (CDC NPCR); and the European Union ERDF funding (University of Exeter)
The association of cytoplasmic overexpression of cyclin d1 and tumor metastasis in Hepatocellular Carcinoma
published_or_final_versio
A review of physical supply and EROI of fossil fuels in China
This paper reviews China’s future fossil fuel supply from the perspectives of physical output and net energy output. Comprehensive analyses of physical output of fossil fuels suggest that China’s total oil production will likely reach its peak, at about 230 Mt/year (or 9.6 EJ/year), in 2018; its total gas production will peak at around 350 Bcm/year (or 13.6 EJ/year) in 2040, while coal production will peak at about 4400 Mt/year (or 91.9 EJ/year) around 2020 or so. In terms of the forecast production of these fuels, there are significant differences among current studies. These differences can be mainly explained by different ultimately recoverable resources assumptions, the nature of the models used, and differences in the historical production data. Due to the future constraints on fossil fuels production, a large gap is projected to grow between domestic supply and demand, which will need to be met by increasing imports. Net energy analyses show that both coal and oil and gas production show a steady declining trend of EROI (energy return on investment) due to the depletion of shallow-buried coal resources and conventional oil and gas resources, which is generally consistent with the approaching peaks of physical production of fossil fuels. The peaks of fossil fuels production, coupled with the decline in EROI ratios, are likely to challenge the sustainable development of Chinese society unless new abundant energy resources with high EROI values can be found
Islands of conformational stability for Filopodia
Filopodia are long, thin protrusions formed when bundles of fibers grow outwardly from a cell surface while remaining closed in a membrane tube. We study the subtle issue of the mechanical stability of such filopodia and how this depends on the deformation of the membrane that arises when the fiber bundle adopts a helical configuration. We calculate the ground state conformation of such filopodia, taking into account the steric interaction between the membrane and the enclosed semiflexible fiber bundle. For typical filopodia we find that a minimum number of fibers is required for filopodium stability. Our calculation elucidates how experimentally observed filopodia can obviate the classical Euler buckling condition and remain stable up to several tens of . We briefly discuss how experimental observation of the results obtained in this work for the helical-like deformations of enclosing membrane tubes in filopodia could possibly be observed in the acrosomal reactions of the sea cucumber Thyone, and the horseshoe crab Limulus. Any realistic future theories for filopodium stability are likely to rely on an accurate treatment of such steric effects, as analysed in this work
Self-assembly of Microcapsules via Colloidal Bond Hybridization and Anisotropy
Particles with directional interactions are promising building blocks for new
functional materials and may serve as models for biological structures.
Mutually attractive nanoparticles that are deformable due to flexible surface
groups, for example, may spontaneously order themselves into strings, sheets
and large vesicles. Furthermore, anisotropic colloids with attractive patches
can self-assemble into open lattices and colloidal equivalents of molecules and
micelles. However, model systems that combine mutual attraction, anisotropy,
and deformability have---to the best of our knowledge---not been realized.
Here, we synthesize colloidal particles that combine these three
characteristics and obtain self-assembled microcapsules. We propose that mutual
attraction and deformability induce directional interactions via colloidal bond
hybridization. Our particles contain both mutually attractive and repulsive
surface groups that are flexible. Analogous to the simplest chemical bond,
where two isotropic orbitals hybridize into the molecular orbital of H2, these
flexible groups redistribute upon binding. Via colloidal bond hybridization,
isotropic spheres self-assemble into planar monolayers, while anisotropic
snowman-like particles self-assemble into hollow monolayer microcapsules. A
modest change of the building blocks thus results in a significant leap in the
complexity of the self-assembled structures. In other words, these relatively
simple building blocks self-assemble into dramatically more complex structures
than similar particles that are isotropic or non-deformable
Magnetism and Charge Dynamics in Iron Pnictides
In a wide variety of materials, such as copper oxides, heavy fermions,
organic salts, and the recently discovered iron pnictides, superconductivity is
found in close proximity to a magnetically ordered state. The character of the
proximate magnetic phase is thus believed to be crucial for understanding the
differences between the various families of unconventional superconductors and
the mechanism of superconductivity. Unlike the AFM order in cuprates, the
nature of the magnetism and of the underlying electronic state in the iron
pnictide superconductors is not well understood. Neither density functional
theory nor models based on atomic physics and superexchange, account for the
small size of the magnetic moment. Many low energy probes such as transport,
STM and ARPES measured strong anisotropy of the electronic states akin to the
nematic order in a liquid crystal, but there is no consensus on its physical
origin, and a three dimensional picture of electronic states and its relations
to the optical conductivity in the magnetic state is lacking. Using a first
principles approach, we obtained the experimentally observed magnetic moment,
optical conductivity, and the anisotropy of the electronic states. The theory
connects ARPES, which measures one particle electronic states, optical
spectroscopy, probing the particle hole excitations of the solid and neutron
scattering which measures the magnetic moment. We predict a manifestation of
the anisotropy in the optical conductivity, and we show that the magnetic phase
arises from the paramagnetic phase by a large gain of the Hund's rule coupling
energy and a smaller loss of kinetic energy, indicating that iron pnictides
represent a new class of compounds where the nature of magnetism is
intermediate between the spin density wave of almost independent particles, and
the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia
- …