270 research outputs found

    Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases

    Get PDF
    The presence of AβpE3 (N-terminal truncated Aβ starting with pyroglutamate) in Alzheimer’s disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Aβ peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down’s syndrome postmortem brain tissue. Importantly, AβpE3 has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Aβ. We have recently shown that intraneuronal accumulation of AβpE3 peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in AβpE3, we have generated two novel monoclonal antibodies which were characterized as highly specific for AβpE3 peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for AβpE3 were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in AβpE3 plaque load with increasing age, while the density for Aβ1-x plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Aβ are N-truncated as disease progresses, and that, AβpE3 positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate

    PIPKIγ Regulates Focal Adhesion Dynamics and Colon Cancer Cell Invasion

    Get PDF
    Focal adhesion assembly and disassembly are essential for cell migration and cancer invasion, but the detailed molecular mechanisms regulating these processes remain to be elucidated. Phosphatidylinositol phosphate kinase type Iγ (PIPKIγ) binds talin and is required for focal adhesion formation in EGF-stimulated cells, but its role in regulating focal adhesion dynamics and cancer invasion is poorly understood. We show here that overexpression of PIPKIγ promoted focal adhesion formation, whereas cells expressing either PIPKIγK188,200R or PIPKIγD316K, two kinase-dead mutants, had much fewer focal adhesions than those expressing WT PIPKIγ in CHO-K1 cells and HCT116 colon cancer cells. Furthermore, overexpression of PIPKIγ, but not PIPKIγK188,200R, resulted in an increase in both focal adhesion assembly and disassembly rates. Depletion of PIPKIγ by using shRNA strongly inhibited formation of focal adhesions in HCT116 cells. Overexpression of PIPKIγK188,200R or depletion of PIPKIγ reduced the strength of HCT116 cell adhesion to fibronection and inhibited the invasive capacities of HCT116 cells. PIPKIγ depletion reduced PIP2 levels to ∼40% of control and PIP3 to undetectable levels, and inhibited vinculin localizing to focal adhesions. Taken together, PIPKIγ positively regulates focal adhesion dynamics and cancer invasion, most probably through PIP2-mediated vinculin activation

    Phase II Trial of Concurrent Sunitinib and Image-Guided Radiotherapy for Oligometastases

    Get PDF
    BACKGROUND: Preclinical data suggest that sunitinib enhances the efficacy of radiotherapy. We tested the combination of sunitinib and hypofractionated image-guided radiotherapy (IGRT) in a cohort of patients with historically incurable distant metastases. METHODS: Twenty five patients with oligometastases, defined as 1-5 sites of active disease on whole body imaging, were enrolled in a phase II trial from 2/08 to 9/10. The most common tumor types treated were head and neck, liver, lung, kidney and prostate cancers. Patients were treated with the recommended phase II dose of 37.5 mg daily sunitinib (days 1-28) and IGRT 50 Gy (days 8-12 and 15-19). Maintenance sunitinib was used in 33% of patients. Median follow up was 17.5 months (range, 0.7 to 37.4 months). RESULTS: The 18-month local control, distant control, progression-free survival (PFS) and overall survival (OS) were 75%, 52%, 56% and 71%, respectively. At last follow-up, 11 (44%) patients were alive without evidence of disease, 7 (28%) were alive with distant metastases, 3 (12%) were dead from distant metastases, 3 (12%) were dead from comorbid illness, and 1 (4%) was dead from treatment-related toxicities. The incidence of acute grade ≥ 3 toxicities was 28%, most commonly myelosuppression, bleeding and abnormal liver function tests. CONCLUSIONS: Concurrent sunitinib and IGRT achieves major clinical responses in a subset of patients with oligometastases. TRIAL REGISTRATION: ClinicalTrials.gov NCT00463060

    Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice

    Get PDF
    Earlier diagnosis and treatment of Alzheimer's disease would greatly benefit from the identification of biomarkers at the prodromal stage. Using a prominent animal model of aspects of the disease, we here show using clinically relevant methodologies that very young, pre-pathological PDAPP mice, which overexpress mutant human amyloid precursor protein in the brain, exhibit two cryptic deficits that are normally undetected using standard methods of assessment. Despite learning a spatial memory task normally and displaying normal brain glucose uptake, they display faster forgetting after a long delay following performance to a criterion, together with a strong impairment of brain glucose uptake at the time of attempted memory retrieval. Preliminary observations suggest that these deficits, likely caused by an impairment in systems consolidation, could be rescued by immunotherapy with an anti-β-amyloid antibody. Our data suggest a biomarker strategy for the early detection of β-amyloid-related abnormalities

    Temperature Affects the Tripartite Interactions between Bacteriophage WO, Wolbachia, and Cytoplasmic Incompatibility

    Get PDF
    Wolbachia infections are a model for understanding intracellular, bacterial symbioses. While the symbiosis is often studied from a binary perspective of host and bacteria, it is increasingly apparent that additional trophic levels can influence the symbiosis. For example, Wolbachia in arthropods harbor a widespread temperate bacteriophage, termed WO, that forms virions and rampantly transfers between coinfections. Here we test the hypothesis that temperatures at the extreme edges of an insect's habitable range alter bacteriophage WO inducibility and in turn, Wolbachia densities and the penetrance of cytoplasmic incompatibility. We report four key findings using the model wasp, Nasonia vitripennis: First, both cold treatment at 18 C and heat treatment at 30 C reduce Wolbachia densities by as much as 74% relative to wasps reared at 25 C. Second, in all cases where Wolbachia densities decline due to temperature changes, phage WO densities increase and inversely associate with Wolbachia densities. Heat has a marked effect on phage WO, yielding phage densities that are 552% higher than the room temperature control. Third, there is a significant affect of insect family on phage WO and endoysmbiont densities. Fourth, at extreme temperatures, there was a temperature-mediated adjustment to the density threshold at which Wolbachia cause complete cytoplasmic incompatibility. Taken together, these results demonstrate that temperature simultaneously affects phage WO densities, endosymbiont densities, and the penetrance of cytoplasmic incompatibility. While temperature shock enhances bacteriophage inducibility and the ensuing bacterial mortality in a wide range of medically and industrially-important bacteria, this is the first investigation of the associations in an obligate intracellular bacteria. Implications to a SOS global sensing feedback mechanism in Wolbachia are discussed

    Excitability and Synaptic Alterations in the Cerebellum of APP/PS1 Mice

    Get PDF
    In Alzheimer's disease (AD), the severity of cognitive symptoms is better correlated with the levels of soluble amyloid-beta (Aβ) rather than with the deposition of fibrillar Aβ in amyloid plaques. In APP/PS1 mice, a murine model of AD, at 8 months of age the cerebellum is devoid of fibrillar Aβ, but dosage of soluble Aβ1–42, the form which is more prone to aggregation, showed higher levels in this structure than in the forebrain. Aim of this study was to investigate the alterations of intrinsic membrane properties and of synaptic inputs in Purkinje cells (PCs) of the cerebellum, where only soluble Aβ is present. PCs were recorded by whole-cell patch-clamp in cerebellar slices from wild-type and APP/PS1 mice. In APP/PS1 PCs, evoked action potential discharge showed enhanced frequency adaptation and larger afterhyperpolarizations, indicating a reduction of the intrinsic membrane excitability. In the miniature GABAergic postsynaptic currents, the largest events were absent in APP/PS1 mice and the interspike intervals distribution was shifted to the left, but the mean amplitude and frequency were normal. The ryanodine-sensitive multivescicular release was not altered and the postsynaptic responsiveness to a GABAA agonist was intact. Climbing fiber postsynaptic currents were normal but their short-term plasticity was reduced in a time window of 100–800 ms. Parallel fiber postsynaptic currents and their short-term plasticity were normal. These results indicate that, in the cerebellar cortex, chronically elevated levels of soluble Aβ1–42 are associated with alterations of the intrinsic excitability of PCs and with alterations of the release of GABA from interneurons and of glutamate from climbing fibers, while the release of glutamate from parallel fibers and all postsynaptic mechanisms are preserved. Thus, soluble Aβ1–42 causes, in PCs, multiple functional alterations, including an impairment of intrinsic membrane properties and synapse-specific deficits, with differential consequences even in different subtypes of glutamatergic synapses

    Variation in antibiotic prescription rates in febrile children presenting to emergency departments across Europe (MOFICHE) : A multicentre observational study

    Get PDF
    Funding Information: This project has received funding from the European Union?s Horizon 2020 research and innovation programme under grant agreement No. 668303. The Research was supported by the National Institute for Health Research Biomedical Research Centres at Imperial College London, Newcastle Hospitals NHS Foundation Trust and Newcastle University. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. For the remaining authors no sources of funding were declared. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We acknowledge all research nurses for their help in collecting data, and Anda Nagle (Riga) and the Institute of Microbiology at University Medical Centre Ljubljana for their help in collecting data on antimicrobial resistance. Members of the PERFORM consortium are listed in S11 Text. Publisher Copyright: Copyright: © 2020 Hagedoorn et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background The prescription rate of antibiotics is high for febrile children visiting the emergency department (ED), contributing to antimicrobial resistance. Large studies at European EDs covering diversity in antibiotic and broad-spectrum prescriptions in all febrile children are lacking. A better understanding of variability in antibiotic prescriptions in EDs and its relation with viral or bacterial disease is essential for the development and implementation of interventions to optimise antibiotic use. As part of the PERFORM (Personalised Risk assessment in Febrile illness to Optimise Real-life Management across the European Union) project, the MOFICHE (Management and Outcome of Fever in Children in Europe) study aims to investigate variation and appropriateness of antibiotic prescription in febrile children visiting EDs in Europe. Methods and findings Between January 2017 and April 2018, data were prospectively collected on febrile children aged 0–18 years presenting to 12 EDs in 8 European countries (Austria, Germany, Greece, Latvia, the Netherlands [n = 3], Spain, Slovenia, United Kingdom [n = 3]). These EDs were based in university hospitals (n = 9) or large teaching hospitals (n = 3). Main outcomes were (1) antibiotic prescription rate; (2) the proportion of antibiotics that were broad-spectrum antibiotics; (3) the proportion of antibiotics of appropriate indication (presumed bacterial), inappropriate indication (presumed viral), or inconclusive indication (unknown bacterial/viral or other); (4) the proportion of oral antibiotics of inappropriate duration; and (5) the proportion of antibiotics that were guideline-concordant in uncomplicated urinary and upper and lower respiratory tract infections (RTIs). We determined variation of antibiotic prescription and broad-spectrum prescription by calculating standardised prescription rates using multilevel logistic regression and adjusted for general characteristics (e.g., age, sex, comorbidity, referral), disease severity (e.g., triage level, fever duration, presence of alarming signs), use and result of diagnostics, and focus and cause of infection. In this analysis of 35,650 children (median age 2.8 years, 55% male), overall antibiotic prescription rate was 31.9% (range across EDs: 22.4%–41.6%), and among those prescriptions, the broad-spectrum antibiotic prescription rate was 52.1% (range across EDs: 33.0%–90.3%). After standardisation, differences in antibiotic prescriptions ranged from 0.8 to 1.4, and the ratio between broad-spectrum and narrow-spectrum prescriptions ranged from 0.7 to 1.8 across EDs. Standardised antibiotic prescription rates varied for presumed bacterial infections (0.9 to 1.1), presumed viral infections (0.1 to 3.3), and infections of unknown cause (0.1 to 1.8). In all febrile children, antibiotic prescriptions were appropriate in 65.0% of prescriptions, inappropriate in 12.5% (range across EDs: 0.6%–29.3%), and inconclusive in 22.5% (range across EDs: 0.4%–60.8%). Prescriptions were of inappropriate duration in 20% of oral prescriptions (range across EDs: 4.4%–59.0%). Oral prescriptions were not concordant with the local guideline in 22.3% (range across EDs: 11.8%–47.3%) of prescriptions in uncomplicated RTIs and in 45.1% (range across EDs: 11.1%–100%) of prescriptions in uncomplicated urinary tract infections. A limitation of our study is that the included EDs are not representative of all febrile children attending EDs in that country. Conclusions In this study, we observed wide variation between European EDs in prescriptions of antibiotics and broad-spectrum antibiotics in febrile children. Overall, one-third of prescriptions were inappropriate or inconclusive, with marked variation between EDs. Until better diagnostics are available to accurately differentiate between bacterial and viral aetiologies, implementation of antimicrobial stewardship guidelines across Europe is necessary to limit antimicrobial resistance.publishersversionPeer reviewe

    Differential Ligand Binding to a Human Cytomegalovirus Chemokine Receptor Determines Cell Type–Specific Motility

    Get PDF
    While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through Gα12 and Fractalkine through Gαq. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis

    Rationale and study design for a randomised controlled trial to reduce sedentary time in adults at risk of type 2 diabetes mellitus: project stand (Sedentary Time ANd diabetes)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rising prevalence of Type 2 Diabetes Mellitus (T2DM) is a major public health problem. There is an urgent need for effective lifestyle interventions to prevent the development of T2DM. Sedentary behaviour (sitting time) has recently been identified as a risk factor for diabetes, often independent of the time spent in moderate-to-vigorous physical activity. Project STAND (<it>Sedentary Time ANd Diabetes</it>) is a study which aims to reduce sedentary behaviour in younger adults at high risk of T2DM.</p> <p>Methods/Design</p> <p>A reduction in sedentary time is targeted using theory driven group structured education. The STAND programme is subject to piloting and process evaluation in line with the MRC framework for complex interventions. Participants are encouraged to self-monitor and self-regulate their behaviour. The intervention is being assessed in a randomised controlled trial with 12 month follow up. Inclusion criteria are a) aged 18-40 years with a BMI in the obese range; b) 18-40 years with a BMI in the overweight range plus an additional risk factor for T2DM. Participants are randomised to the intervention (n = 89) or control (n = 89) arm. The primary outcome is a reduction in sedentary behaviour at 12 months as measured by an accelerometer (count < 100/min). Secondary outcomes include physical activity, sitting/lying time using the ActivPAL posture monitor, fasting and 2 h oral glucose tolerance test, lipids, inflammatory biomarkers, body weight, waist circumference, blood pressure, illness perceptions, and efficacy beliefs for behaviour change.</p> <p>Conclusions</p> <p>This is the first UK trial to address sedentary behaviour change in a population of younger adults at risk of T2DM. The results will provide a platform for the development of a range of future multidisciplinary interventions in this rapidly expanding high-risk population.</p> <p>Trial registration</p> <p>Current controlled trials <a href="http://www.controlled-trials.com/ISRCTN08434554">ISRCTN08434554</a>, MRC project 91409.</p
    corecore