346 research outputs found

    Detecting brute-force attacks on cryptocurrency wallets

    Full text link
    Blockchain is a distributed ledger, which is protected against malicious modifications by means of cryptographic tools, e.g. digital signatures and hash functions. One of the most prominent applications of blockchains is cryptocurrencies, such as Bitcoin. In this work, we consider a particular attack on wallets for collecting assets in a cryptocurrency network based on brute-force search attacks. Using Bitcoin as an example, we demonstrate that if the attack is implemented successfully, a legitimate user is able to prove that fact of this attack with a high probability. We also consider two options for modification of existing cryptocurrency protocols for dealing with this type of attacks. First, we discuss a modification that requires introducing changes in the Bitcoin protocol and allows diminishing the motivation to attack wallets. Second, an alternative option is the construction of special smart-contracts, which reward the users for providing evidence of the brute-force attack. The execution of this smart-contract can work as an automatic alarm that the employed cryptographic mechanisms, and (particularly) hash functions, have an evident vulnerability.Comment: 10 pages, 2 figures; published versio

    Multiplicative random walk Metropolis-Hastings on the real line

    Full text link
    In this article we propose multiplication based random walk Metropolis Hastings (MH) algorithm on the real line. We call it the random dive MH (RDMH) algorithm. This algorithm, even if simple to apply, was not studied earlier in Markov chain Monte Carlo literature. The associated kernel is shown to have standard properties like irreducibility, aperiodicity and Harris recurrence under some mild assumptions. These ensure basic convergence (ergodicity) of the kernel. Further the kernel is shown to be geometric ergodic for a large class of target densities on R\mathbb{R}. This class even contains realistic target densities for which random walk or Langevin MH are not geometrically ergodic. Three simulation studies are given to demonstrate the mixing property and superiority of RDMH to standard MH algorithms on real line. A share-price return data is also analyzed and the results are compared with those available in the literature

    Fluctuations in granular gases

    Full text link
    A driven granular material, e.g. a vibrated box full of sand, is a stationary system which may be very far from equilibrium. The standard equilibrium statistical mechanics is therefore inadequate to describe fluctuations in such a system. Here we present numerical and analytical results concerning energy and injected power fluctuations. In the first part we explain how the study of the probability density function (pdf) of the fluctuations of total energy is related to the characterization of velocity correlations. Two different regimes are addressed: the gas driven at the boundaries and the homogeneously driven gas. In a granular gas, due to non-Gaussianity of the velocity pdf or lack of homogeneity in hydrodynamics profiles, even in the absence of velocity correlations, the fluctuations of total energy are non-trivial and may lead to erroneous conclusions about the role of correlations. In the second part of the chapter we take into consideration the fluctuations of injected power in driven granular gas models. Recently, real and numerical experiments have been interpreted as evidence that the fluctuations of power injection seem to satisfy the Gallavotti-Cohen Fluctuation Relation. We will discuss an alternative interpretation of such results which invalidates the Gallavotti-Cohen symmetry. Moreover, starting from the Liouville equation and using techniques from large deviation theory, the general validity of a Fluctuation Relation for power injection in driven granular gases is questioned. Finally a functional is defined using the Lebowitz-Spohn approach for Markov processes applied to the linear inelastic Boltzmann equation relevant to describe the motion of a tracer particle. Such a functional results to be different from injected power and to satisfy a Fluctuation Relation.Comment: 40 pages, 18 figure

    Statistically validated networks in bipartite complex systems

    Get PDF
    Many complex systems present an intrinsic bipartite nature and are often described and modeled in terms of networks [1-5]. Examples include movies and actors [1, 2, 4], authors and scientific papers [6-9], email accounts and emails [10], plants and animals that pollinate them [11, 12]. Bipartite networks are often very heterogeneous in the number of relationships that the elements of one set establish with the elements of the other set. When one constructs a projected network with nodes from only one set, the system heterogeneity makes it very difficult to identify preferential links between the elements. Here we introduce an unsupervised method to statistically validate each link of the projected network against a null hypothesis taking into account the heterogeneity of the system. We apply our method to three different systems, namely the set of clusters of orthologous genes (COG) in completely sequenced genomes [13, 14], a set of daily returns of 500 US financial stocks, and the set of world movies of the IMDb database [15]. In all these systems, both different in size and level of heterogeneity, we find that our method is able to detect network structures which are informative about the system and are not simply expression of its heterogeneity. Specifically, our method (i) identifies the preferential relationships between the elements, (ii) naturally highlights the clustered structure of investigated systems, and (iii) allows to classify links according to the type of statistically validated relationships between the connected nodes.Comment: Main text: 13 pages, 3 figures, and 1 Table. Supplementary information: 15 pages, 3 figures, and 2 Table

    Severe leukoencephalopathy with fulminant cerebral edema reflecting immune reconstitution inflammatory syndrome during HIV infection: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Immune reconstitution inflammatory syndrome is a well-known complication in HIV-infected patients after initiation of highly active antiretroviral therapy resulting in rapid CD4<sup>+ </sup>cell count recovery and suppression of viral load. Generally, immune reconstitution inflammatory syndrome is based on opportunistic infections, but rare cases of immune reconstitution inflammatory syndrome inducing demyelinization of the nervous system have also been observed.</p> <p>Case presentation</p> <p>A 37-year-old African woman with HIV infection diagnosed at 13 years of age was admitted to the emergency department after experiencing backache, severe headache, acute aphasia and psychomotor slowing for one week. Nine weeks earlier, highly active antiretroviral therapy in this patient had been changed because of loss of efficacy, and a rapid increase in CD4<sup>+ </sup>cell count and decrease of HIV viral load were observed. Magnetic resonance imaging of the brain showed extensive white matter lesions, and analysis of cerebrospinal fluid revealed an immunoreactive syndrome. Intensive investigations detected no opportunistic infections. A salvage therapy, including osmotherapy, corticosteroids and treatment of epileptic seizures, was performed, but the patient died from brainstem herniation 48 hours after admission. Neuropathologic examination of the brain revealed diffuse swelling, leptomeningeal infiltration by CD8 cells and enhancement of perivascular spaces by CD8+ cells.</p> <p>Conclusion</p> <p>Immune reconstitution inflammatory syndrome in this form seems to represent a severe autoimmunologic disease of the brain with specific histopathologic findings. This form of immune reconstitution inflammatory syndrome did not respond to therapy, and extremely rapid deterioration led to death within two days. Immune reconstitution inflammatory syndrome may also occur as severe leukoencephalopathy with fulminant cerebral edema during HIV infection with rapid immune reconstitution.</p

    Tracheostomy in the COVID-19 era: global and multidisciplinary guidance

    Get PDF
    Global health care is experiencing an unprecedented surge in the number of critically ill patients who require mechanical ventilation due to the COVID-19 pandemic. The requirement for relatively long periods of ventilation in those who survive means that many are considered for tracheostomy to free patients from ventilatory support and maximise scarce resources. COVID-19 provides unique challenges for tracheostomy care: health-care workers need to safely undertake tracheostomy procedures and manage patients afterwards, minimising risks of nosocomial transmission and compromises in the quality of care. Conflicting recommendations exist about case selection, the timing and performance of tracheostomy, and the subsequent management of patients. In response, we convened an international working group of individuals with relevant expertise in tracheostomy. We did a literature and internet search for reports of research pertaining to tracheostomy during the COVID-19 pandemic, supplemented by sources comprising statements and guidance on tracheostomy care. By synthesising early experiences from countries that have managed a surge in patient numbers, emerging virological data, and international, multidisciplinary expert opinion, we aim to provide consensus guidelines and recommendations on the conduct and management of tracheostomy during the COVID-19 pandemic

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
    • …
    corecore