45 research outputs found
Was Dinosaurian Physiology Inherited by Birds? Reconciling Slow Growth in Archaeopteryx
Archaeopteryx is the oldest and most primitive known bird (Avialae). It is believed that the growth and energetic physiology of basalmost birds such as Archaeopteryx were inherited in their entirety from non-avialan dinosaurs. This hypothesis predicts that the long bones in these birds formed using rapidly growing, well-vascularized woven tissue typical of non-avialan dinosaurs. We report that Archaeopteryx long bones are composed of nearly avascular parallel-fibered bone. This is among the slowest growing osseous tissues and is common in ectothermic reptiles. These findings dispute the hypothesis that non-avialan dinosaur growth and physiology were inherited in totality by the first birds. Examining these findings in a phylogenetic context required intensive sampling of outgroup dinosaurs and basalmost birds. Our results demonstrate the presence of a scale-dependent maniraptoran histological continuum that Archaeopteryx and other basalmost birds follow. Growth analysis for Archaeopteryx suggests that these animals showed exponential growth rates like non-avialan dinosaurs, three times slower than living precocial birds, but still within the lowermost range for all endothermic vertebrates. The unexpected histology of Archaeopteryx and other basalmost birds is actually consistent with retention of the phylogenetically earlier paravian dinosaur condition when size is considered. The first birds were simply feathered dinosaurs with respect to growth and energetic physiology. The evolution of the novel pattern in modern forms occurred later in the group's history
Production of dust by massive stars at high redshift
The large amounts of dust detected in sub-millimeter galaxies and quasars at
high redshift pose a challenge to galaxy formation models and theories of
cosmic dust formation. At z > 6 only stars of relatively high mass (> 3 Msun)
are sufficiently short-lived to be potential stellar sources of dust. This
review is devoted to identifying and quantifying the most important stellar
channels of rapid dust formation. We ascertain the dust production efficiency
of stars in the mass range 3-40 Msun using both observed and theoretical dust
yields of evolved massive stars and supernovae (SNe) and provide analytical
expressions for the dust production efficiencies in various scenarios. We also
address the strong sensitivity of the total dust productivity to the initial
mass function. From simple considerations, we find that, in the early Universe,
high-mass (> 3 Msun) asymptotic giant branch stars can only be dominant dust
producers if SNe generate <~ 3 x 10^-3 Msun of dust whereas SNe prevail if they
are more efficient. We address the challenges in inferring dust masses and
star-formation rates from observations of high-redshift galaxies. We conclude
that significant SN dust production at high redshift is likely required to
reproduce current dust mass estimates, possibly coupled with rapid dust grain
growth in the interstellar medium.Comment: 72 pages, 9 figures, 5 tables; to be published in The Astronomy and
Astrophysics Revie
Not just about sunburn - the ozone hole\u27s profound effect on climate has significant implications for Southern Hemisphere ecosystems
Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion