37 research outputs found

    Cell culture-based analysis of postsynaptic membrane assembly in muscle cells

    Get PDF
    We report a method for studying postsynaptic membrane assembly utilizing the replating of aneural cultures of differentiated skeletal muscle cells onto laminin-coated surfaces. A significant limitation to the current cell culturebased approaches has been their inability to recapitulate the multistage surface acetylcholine receptor (AChR) redistribution events that produce complex AChR clusters found at the intact neuromuscular junction (NMJ). By taking advantage of the ability of substrate laminin to induce advanced maturation of AChR aggregates on the surface of myotubes, we have developed a secondary-plating method that allows more precise analysis of the signaling events connecting substrate laminin stimulation to complex AChR cluster formation. We validate the utility of this method for biochemical and microscopy studies by demonstrating the roles of RhoGTPases in substrate laminin-induced complex cluster assembly

    Skeletal Muscle-Specific Ablation of γcyto-Actin Does Not Exacerbate the mdx Phenotype

    Get PDF
    We previously documented a ten-fold increase in γcyto-actin expression in dystrophin-deficient skeletal muscle and hypothesized that increased γcyto-actin expression may participate in an adaptive cytoskeletal remodeling response. To explore whether increased γcyto-actin fortifies the cortical cytoskeleton in dystrophic skeletal muscle, we generated double knockout mice lacking both dystrophin and γcyto-actin specifically in skeletal muscle (ms-DKO). Surprisingly, dystrophin-deficient mdx and ms-DKO mice presented with comparable levels of myofiber necrosis, membrane instability, and deficits in muscle function. The lack of an exacerbated phenotype in ms-DKO mice suggests γcyto-actin and dystrophin function in a common pathway. Finally, because both mdx and ms-DKO skeletal muscle showed similar levels of utrophin expression and presented with identical dystrophies, we conclude utrophin can partially compensate for the loss of dystrophin independent of a γcyto-actin-utrophin interaction

    Lambs with Scrapie Susceptible Genotypes Have Higher Postnatal Survival

    Get PDF
    BACKGROUND: Prion protein (PrP) alleles associated with scrapie susceptibility persist in many sheep populations even with high frequencies despite centuries of selection against them. This suggests that scrapie susceptibility alleles have a pleiotropic effect or are associated with fitness or other traits that have been subject to selection. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped all lambs in two scrapie-free Scottish Blackface sheep flocks for polymorphisms at codons 136, 154 and 171 of the PrP gene. We tested potential associations of the PrP genotype with lamb viability at birth and postnatal survival using a complementary log-log link function and a Weibull proportional hazard model, respectively. Here we show there is an association between PrP genotype, as defined by polymorphisms at codons 154 ad 171, and postnatal lamb survival in the absence of scrapie. Sheep carrying the wild-type ARQ allele have higher postnatal survival rates than sheep carrying the more scrapie-resistant alleles (ARR or AHQ). CONCLUSION: The PrP genotypes associated with higher susceptibility to scrapie are associated with improved postnatal survival in the absence of the disease. This association helps to explain the existence, and in many instances the high frequency, of the ARQ allele in sheep populations

    Integrin α7 Mutations Are Associated With Adult-Onset Cardiac Dysfunction in Humans and Mice.

    Get PDF
    Background Integrin α7β1 is a major laminin receptor in skeletal and cardiac muscle. In skeletal muscle, integrin α7β1 plays an important role during muscle development and has been described as an important modifier of skeletal muscle diseases. The integrin α7β1 is also highly expressed in the heart, but its precise role in cardiac function is unknown. Mutations in the integrin α7 gene (ITGA7) have been reported in children with congenital myopathy. Methods and Results In this study, we described skeletal and cardiac muscle pathology in Itga7-/- mice and 5 patients from 2 unrelated families with ITGA7 mutations. Proband in family 1 presented a homozygous c.806_818del [p.S269fs] variant, and proband in family 2 was identified with 2 intron variants in the ITGA7 gene. The complete absence of the integrin α7 protein in muscle supports the ITGA7 mutations are pathogenic. We performed electrocardiography, echocardiography, or cardiac magnetic resonance imaging, and histological biopsy analyses in patients with ITGA7 deficiency and Itga7-/- mice. The patients exhibited cardiac dysrhythmia and dysfunction from the third decade of life and late-onset respiratory insufficiency, but with relatively mild limb muscle involvement. Mice demonstrated corresponding abnormalities in cardiac conduction and contraction as well as diaphragm muscle fibrosis. Conclusions Our data suggest that loss of integrin α7 causes a novel form of adult-onset cardiac dysfunction indicating a critical role for the integrin α7β1 in normal cardiac function and highlights the need for long-term cardiac monitoring in patients with ITGA7-related congenital myopathy

    β1-integrins signaling and mammary tumor progression in transgenic mouse models: implications for human breast cancer

    Get PDF
    Consistent with their essential role in cell adhesion to the extracellular matrix, integrins and their associated signaling pathways have been shown to be involved in cell proliferation, migration, invasion and survival, processes required in both tumorigenesis and metastasis. β1-integrins represent the predominantly expressed integrins in mammary epithelial cells and have been proven crucial for mammary gland development and differentiation. Here we provide an overview of the studies that have used transgenic mouse models of mammary tumorigenesis to establish β1-integrin as a critical mediator of breast cancer progression and thereby as a potential therapeutic target for the development of new anticancer strategies
    corecore