133 research outputs found

    Read-through Activation of Transcription in a Cellular Genomic Context

    Get PDF
    Read-through transcription from the adjacent E1a gene region is required for wild-type (wt) activity of the downstream adenovirus E1b promoter early after infection (read-through activation). However, whether a cellular chromosomal template can support read-through activation is not known. To address this issue, read-through activation was evaluated in the context of stably expressed templates in transfected cells. Inhibition of read-through transcription by insertion of a transcription termination sequence between the E1a and E1b promoters reduced downstream gene expression from stably integrated templates. The results indicate that the mechanism of read-through activation does not depend on the structure of early adenovirus nucleoprotein complexes, a structure that is likely to be different from that of cellular chromatin. Accordingly, this regulatory interaction could participate in the coordinated control of the expression of closely linked cellular genes

    A genome-wide association study identifies multiple loci for variation in human ear morphology

    Get PDF
    Here we report a genome-wide association study for non-pathological pinna morphology in over 5,000 Latin Americans. We find genome-wide significant association at seven genomic regions affecting: lobe size and attachment, folding of antihelix, helix rolling, ear protrusion and antitragus size (linear regression P values 2 × 10−8 to 3 × 10−14). Four traits are associated with a functional variant in the Ectodysplasin A receptor (EDAR) gene, a key regulator of embryonic skin appendage development. We confirm expression of Edar in the developing mouse ear and that Edar-deficient mice have an abnormally shaped pinna. Two traits are associated with SNPs in a region overlapping the T-Box Protein 15 (TBX15) gene, a major determinant of mouse skeletal development. Strongest association in this region is observed for SNP rs17023457 located in an evolutionarily conserved binding site for the transcription factor Cartilage paired-class homeoprotein 1 (CART1), and we confirm that rs17023457 alters in vitro binding of CART1

    Nutrient Availability as a Mechanism for Selection of Antibiotic Tolerant Pseudomonas aeruginosa within the CF Airway

    Get PDF
    Microbes are subjected to selective pressures during chronic infections of host tissues. Pseudomonas aeruginosa isolates with inactivating mutations in the transcriptional regulator LasR are frequently selected within the airways of people with cystic fibrosis (CF), and infection with these isolates has been associated with poorer lung function outcomes. The mechanisms underlying selection for lasR mutation are unknown but have been postulated to involve the abundance of specific nutrients within CF airway secretions. We characterized lasR mutant P. aeruginosa strains and isolates to identify conditions found in CF airways that select for growth of lasR mutants. Relative to wild-type P. aeruginosa, lasR mutants exhibited a dramatic metabolic shift, including decreased oxygen consumption and increased nitrate utilization, that is predicted to confer increased fitness within the nutrient conditions known to occur in CF airways. This metabolic shift exhibited by lasR mutants conferred resistance to two antibiotics used frequently in CF care, tobramycin and ciprofloxacin, even under oxygen-dependent growth conditions, yet selection for these mutants in vitro did not require preceding antibiotic exposure. The selection for loss of LasR function in vivo, and the associated adverse clinical impact, could be due to increased bacterial growth in the oxygen-poor and nitrate-rich CF airway, and from the resulting resistance to therapeutic antibiotics. The metabolic similarities among diverse chronic infection-adapted bacteria suggest a common mode of adaptation and antibiotic resistance during chronic infection that is primarily driven by bacterial metabolic shifts in response to nutrient availability within host tissues

    Modeling early recovery of physical function following hip and knee arthroplasty

    Get PDF
    BACKGROUND: Information on early recovery after arthroplasty is needed to help benchmark progress and make appropriate decisions concerning patient rehabilitation needs. The purpose of this study was to model early recovery of physical function in patients undergoing total hip (THA) and knee (TKA) arthroplasty, using physical performance and self-report measures. METHODS: A sample of convenience of 152 subjects completed testing, of which 69 (mean age: 66.77 ± 8.23 years) underwent THA and 83 (mean age: 60.25 ± 11.19 years) TKA. Postoperatively, patients were treated using standardized care pathways and rehabilitation protocols. Using a repeated measures design, patients were assessed at multiple time points over the first four postoperative months. Outcome measures included the Lower Extremity Function Scale (LEFS), the physical function subscale of the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC PF), the 6 minute walk test (6 MWT), timed up and go test (TUG) and a timed stair test (ST). Average recovery curves for each of the measures were characterized using hierarchical linear modeling. Predictors of recovery were sequentially modeled after validation of the basic developmental models. RESULTS: Slopes of recovery were greater in the first 6 to 9 weeks with a second-degree polynomial growth term (weeks squared) providing a reasonable fit for the data over the study interval. Different patterns of recovery were observed between the self-report measures of physical function and the performance measures. In contrast to the models for the WOMAC PF and the LEFS, site of arthroplasty was a significant predictor (p = 0.001) in all of the physical performance measure models with the patients post TKA initially demonstrating higher function. Site of arthroplasty (p = 0.025) also predicted the rate of change for patients post THA and between 9 to 11 weeks after surgery, the THA group surpassed the function of the patients post TKA. CONCLUSION: Knowledge about the predicted growth curves will assist clinicians in referencing patient progress, and determining the critical time points for measuring change. The study has contributed further evidence to highlight the benefit of using physical performance measures to learn about the patients' actual level of disability

    The relationship between early neural responses to emotional faces at age 3 and later autism and anxiety symptoms in adolescents with autism

    Get PDF
    Both autism spectrum (ASD) and anxiety disorders are associated with atypical neural and attentional responses to emotional faces, differing in affective face processing from typically developing peers. Within a longitudinal study of children with ASD (23 male, 3 female), we hypothesized that early ERPs to emotional faces would predict concurrent and later ASD and anxiety symptoms. Greater response amplitude to fearful faces corresponded to greater social communication difficulties at age 3, and less improvement by age 14. Faster ERPs to neutral faces predicted greater ASD symptom improvement over time, lower ASD severity in adolescence, and lower anxiety in adolescence. Early individual differences in processing of emotional stimuli likely reflect a unique predictive contribution from social brain circuitry early in life

    Positive Selection in East Asians for an EDAR Allele that Enhances NF-κB Activation

    Get PDF
    Genome-wide scans for positive selection in humans provide a promising approach to establish links between genetic variants and adaptive phenotypes. From this approach, lists of hundreds of candidate genomic regions for positive selection have been assembled. These candidate regions are expected to contain variants that contribute to adaptive phenotypes, but few of these regions have been associated with phenotypic effects. Here we present evidence that a derived nonsynonymous substitution (370A) in EDAR, a gene involved in ectodermal development, was driven to high frequency in East Asia by positive selection prior to 10,000 years ago. With an in vitro transfection assay, we demonstrate that 370A enhances NF-κB activity. Our results suggest that 370A is a positively selected functional genetic variant that underlies an adaptive human phenotype

    Neighborhood socioeconomic status, Medicaid coverage and medical management of myocardial infarction: Atherosclerosis risk in communities (ARIC) community surveillance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pharmacologic treatments are efficacious in reducing post-myocardial infarction (MI) morbidity and mortality. The potential influence of socioeconomic factors on the receipt of pharmacologic therapy has not been systematically examined, even though healthcare utilization likely influences morbidity and mortality post-MI. This study aims to investigate the association between socioeconomic factors and receipt of evidence-based treatments post-MI in a community surveillance setting.</p> <p>Methods</p> <p>We evaluated the association of census tract-level neighborhood household income (nINC) and Medicaid coverage with pharmacologic treatments (aspirin, beta [β]-blockers and angiotensin converting enzyme [ACE] inhibitors; optimal therapy, defined as receipt of two or more treatments) received during hospitalization or at discharge among 9,608 MI events in the ARIC community surveillance study (1993-2002). Prevalence ratios (PR, 95% CI), adjusted for the clustering of hospitalized MI events within census tracts and within patients, were estimated using Poisson regression.</p> <p>Results</p> <p>Seventy-eight percent of patients received optimal therapy. Low nINC was associated with a lower likelihood of receiving β-blockers (0.93, 0.87-0.98) and a higher likelihood of receiving ACE inhibitors (1.13, 1.04-1.22), compared to high nINC. Patients with Medicaid coverage were less likely to receive aspirin (0.92, 0.87-0.98), compared to patients without Medicaid coverage. These findings were independent of other key covariates.</p> <p>Conclusions</p> <p>nINC and Medicaid coverage may be two of several socioeconomic factors influencing the complexities of medical care practice patterns.</p

    The Histone Demethylase Jarid1b (Kdm5b) Is a Novel Component of the Rb Pathway and Associates with E2f-Target Genes in MEFs during Senescence

    Get PDF
    Senescence is a robust cell cycle arrest controlled by the p53 and Rb pathways that acts as an important barrier to tumorigenesis. Senescence is associated with profound alterations in gene expression, including stable suppression of E2f-target genes by heterochromatin formation. Some of these changes in chromatin composition are orchestrated by Rb. In complex with E2f, Rb recruits chromatin modifying enzymes to E2f target genes, leading to their transcriptional repression. To identify novel chromatin remodeling enzymes that specifically function in the Rb pathway, we used a functional genetic screening model for bypass of senescence in murine cells. We identified the H3K4-demethylase Jarid1b as novel component of the Rb pathway in this screening model. We find that depletion of Jarid1b phenocopies knockdown of Rb1 and that Jarid1b associates with E2f-target genes during cellular senescence. These results suggest a role for Jarid1b in Rb-mediated repression of cell cycle genes during senescence

    Mobile DNA elements in T4 and related phages

    Get PDF
    Mobile genetic elements are common inhabitants of virtually every genome where they can exert profound influences on genome structure and function in addition to promoting their own spread within and between genomes. Phage T4 and related phage have long served as a model system for understanding the molecular mechanisms by which a certain class of mobile DNA, homing endonucleases, promote their spread. Homing endonucleases are site-specific DNA endonucleases that initiate mobility by introducing double-strand breaks at defined positions in genomes lacking the endonuclease gene, stimulating repair and recombination pathways that mobilize the endonuclease coding region. In phage T4, homing endonucleases were first discovered as encoded within the self-splicing td, nrdB and nrdD introns of T4. Genomic data has revealed that homing endonucleases are extremely widespread in T-even-like phage, as evidenced by the astounding fact that ~11% of the T4 genome encodes homing endonuclease genes, with most of them located outside of self-splicing introns. Detailed studies of the mobile td intron and its encoded endonuclease, I-TevI, have laid the foundation for genetic, biochemical and structural aspects that regulate the mobility process, and more recently have provided insights into regulation of homing endonuclease function. Here, we summarize the current state of knowledge regarding T4-encoded homing endonucleases, with particular emphasis on the td/I-TevI model system. We also discuss recent progress in the biology of free-standing endonucleases, and present areas of future research for this fascinating class of mobile genetic elements

    HP1a Targets the Drosophila KDM4A Demethylase to a Subset of Heterochromatic Genes to Regulate H3K36me3 Levels

    Get PDF
    The KDM4 subfamily of JmjC domain-containing demethylases mediates demethylation of histone H3K36me3/me2 and H3K9me3/me2. Several studies have shown that human and yeast KDM4 proteins bind to specific gene promoters and regulate gene expression. However, the genome-wide distribution of KDM4 proteins and the mechanism of genomic-targeting remain elusive. We have previously identified Drosophila KDM4A (dKDM4A) as a histone H3K36me3 demethylase that directly interacts with HP1a. Here, we performed H3K36me3 ChIP-chip analysis in wild type and dkdm4a mutant embryos to identify genes regulated by dKDM4A demethylase activity in vivo. A subset of heterochromatic genes that show increased H3K36me3 levels in dkdm4a mutant embryos overlap with HP1a target genes. More importantly, binding to HP1a is required for dKDM4A-mediated H3K36me3 demethylation at a subset of heterochromatic genes. Collectively, these results show that HP1a functions to target the H3K36 demethylase dKDM4A to heterochromatic genes in Drosophila
    corecore