50 research outputs found

    CropPol: a dynamic, open and global database on crop pollination

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record The original dataset (v1.1.0) of the CropPol database can be accessed from the ECOLOGY repository. Main upgrades of these datasets will be versioned and deposited in Zenodo (DOI: 10.5281/zenodo.5546600)Data availability. V.C. Computer programs and data-processing algorithms: The algorithms used in deriving, processing, or transforming data can be accessed in the DataS1.zip file and the Zenodo repository (DOI: 10.5281/zenodo.5546600). V.D. Archiving: The data is archived for long-term storage and access in Zenodo (DOI: 10.5281/zenodo.5546600)Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e. berry weight, number of fruits and kg per hectare, among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), Northern America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-05 (21 studies), 2006-10 (40), 2011-15 (88), and 2016-20 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA). This article is protected by copyright. All rights reserved.OBServ Projec

    Motility and guidance of sea urchin sperm

    Full text link
    The sperm tail movement is a direct result from contributions of fluid mechanics, elasticity, and molecular-motor activity. Within the flagellum, the axonemal engine yields overall mechanical response and, ultimately, motility. This chapter attempts to provide a comprehensive and integrative overview of the relationship between the mechanics, signaling of sperm propulsion, and the physiological function of these cells in 3D. Sperm swimming, with its intricate coupling between the regulations of the flagellar beating has to ultimately fulfill its evolutionary function honed in their natural environment, the open sea. The strategies that are being employed to unravel this fascinating and fundamental process are revisited, where the sliding of water bodies shape chemical landscapes sensed by sperms during their journey, affecting motility patterns and directly determining gamete encounter rates.A.G. and C.B. acknowledge grants from the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica UNAM (PAPIIT/DGAPA) IA202417 to A.G. and IN206016 and IN215519 to C.B. A.G. acknowledge the Consejo Nacional de Ciencia y Tecnologıa (CONACyT, 252213). We thank CONACYT and PAPIIT for fellowships to H.R. I.T. acknowledges the support from the Spanish Ministry of Economy and Competitiveness Grants No. FIS2016-77692-C2-1-P
    corecore