17 research outputs found

    Obtaining Adequate Surgical Margins in Breast-Conserving Therapy for Patients with Early-Stage Breast Cancer: Current Modalities and Future Directions

    Get PDF
    Inadequate surgical margins represent a high risk for adverse clinical outcome in breast-conserving therapy (BCT) for early-stage breast cancer. The majority of studies report positive resection margins in 20% to 40% of the patients who underwent BCT. This may result in an increased local recurrence (LR) rate or additional surgery and, consequently, adverse affects on cosmesis, psychological distress, and health costs. In the literature, various risk factors are reported to be associated with positive margin status after lumpectomy, which may allow the surgeon to distinguish those patients with a higher a priori risk for re-excision. However, most risk factors are related to tumor biology and patient characteristics, which cannot be modified as such. Therefore, efforts to reduce the number of positive margins should focus on optimizing the surgical procedure itself, because the surgeon lacks real-time intraoperative information on the presence of positive resection margins during breast-conserving surgery. This review presents the status of pre- and intraoperative modalities currently used in BCT. Furthermore, innovative intraoperative approaches, such as positron emission tomography, radioguided occult lesion localization, and near-infrared fluorescence optical imaging, are addressed, which have to prove their potential value in improving surgical outcome and reducing the need for re-excision in BCT

    Latent analysis of unmodified biomolecules and their complexes in solution with attomole detection sensitivity

    Get PDF
    The study of biomolecular interactions is central to an understanding of function, malfunction and therapeutic modulation of biological systems, yet often involves a compromise between sensitivity and accuracy. Many conventional analytical steps and the procedures required to facilitate sensitive detection, such as the incorporation of chemical labels, are prone to perturb the complexes under observation. Here we present a 'latent' analysis approach that uses chemical and microfluidic tools to reveal, through highly sensitive detection of a labelled system, the behaviour of the physiologically relevant unlabelled system. We implement this strategy in a native microfluidic diffusional sizing platform, allowing us to achieve detection sensitivity at the attomole level, determine the hydrodynamic radii of biomolecules that vary by over three orders of magnitude in molecular weight, and study heterogeneous mixtures. We illustrate these key advantages by characterizing a complex of an antibody domain in the solution phase and under physiologically relevant conditions.We would like to thank the ERC, BBSRC, Wellcome Trust, Newman Foundation, Winston Churchill Foundation, and Elan Pharmaceuticals for financial support. E.D.G was supported by the MRC (G1002272)

    Interaction in solution

    No full text

    Dimeric variants of the red fluorescent protein eqFP611 generated by site-directed mutagenesis

    No full text
    The red fluorescent protein eqFP611 shows favorable properties for applications as molecular marker. Its usefulness is, however, limited by its tendency to form tetramers at physiological concentrations. To provide a basis for the rational design of monomeric variants, we examined the monomer interfaces in the x-ray structure of eqFP611. The arrangement of the four ß cans is very similar to that of other GFP-like proteins such as DsRed and RTMS5. In eqFP611, the monomers are linked by comparatively weak interactions, as inferred from the dissociation into monomers in the presence of SDS or at high dilution. Analysis at the single-molecule level revealed that the monomers are highly fluorescent. Some structural features of the tetrameric interfaces explain the weak subunit interactions in eqFP611. Functional dimeric variants could be generated by altering the A/B interface by single point mutations (Thr122Arg, Val124Thr). By contrast, structural manipulations in the A/C interface resulted as yet in essentially complete loss of fluorescence. Presumably, the folding of eqFP611 into its functional form relies on A/C interfacial interactions.<br/
    corecore