65 research outputs found
Bayesian Inference in Processing Experimental Data: Principles and Basic Applications
This report introduces general ideas and some basic methods of the Bayesian
probability theory applied to physics measurements. Our aim is to make the
reader familiar, through examples rather than rigorous formalism, with concepts
such as: model comparison (including the automatic Ockham's Razor filter
provided by the Bayesian approach); parametric inference; quantification of the
uncertainty about the value of physical quantities, also taking into account
systematic effects; role of marginalization; posterior characterization;
predictive distributions; hierarchical modelling and hyperparameters; Gaussian
approximation of the posterior and recovery of conventional methods, especially
maximum likelihood and chi-square fits under well defined conditions; conjugate
priors, transformation invariance and maximum entropy motivated priors; Monte
Carlo estimates of expectation, including a short introduction to Markov Chain
Monte Carlo methods.Comment: 40 pages, 2 figures, invited paper for Reports on Progress in Physic
New Experimental Evaluation Strategies Regarding Slag Prediction of Solid Biofuels in Pellet Boilers
- …