6,140 research outputs found
Self-Tuning at Large (Distances): 4D Description of Runaway Dilaton Capture
We complete here a three-part study (see also arXiv:1506.08095 and
1508.00856) of how codimension-two objects back-react gravitationally with
their environment, with particular interest in situations where the transverse
`bulk' is stabilized by the interplay between gravity and flux-quantization in
a dilaton-Maxwell-Einstein system such as commonly appears in
higher-dimensional supergravity and is used in the Supersymmetric Large Extra
Dimensions (SLED) program. Such systems enjoy a classical flat direction that
can be lifted by interactions with the branes, giving a mass to the would-be
modulus that is smaller than the KK scale. We construct the effective
low-energy 4D description appropriate below the KK scale once the transverse
extra dimensions are integrated out, and show that it reproduces the
predictions of the full UV theory for how the vacuum energy and modulus mass
depend on the properties of the branes and stabilizing fluxes. In particular we
show how this 4D theory learns the news of flux quantization through the
existence of a space-filling four-form potential that descends from the
higher-dimensional Maxwell field. We find a scalar potential consistent with
general constraints, like the runaway dictated by Weinberg's theorem. We show
how scale-breaking brane interactions can give this potential minima for which
the extra-dimensional size, , is exponentially large relative to
underlying physics scales, , with where
can be arranged with a small hierarchy between fundamental
parameters. We identify circumstances where the potential at the minimum can
(but need not) be parametrically suppressed relative to the tensions of the
branes, provide a preliminary discussion of the robustness of these results to
quantum corrections, and discuss the relation between what we find and earlier
papers in the SLED program.Comment: 37 pages + appendice
The Gravity of Dark Vortices: Effective Field Theory for Branes and Strings Carrying Localized Flux
A Nielsen-Olesen vortex usually sits in an environment that expels the flux
that is confined to the vortex, so flux is not present both inside and outside.
We construct vortices for which this is not true, where the flux carried by the
vortex also permeates the `bulk' far from the vortex. The idea is to mix the
vortex's internal gauge flux with an external flux using off-diagonal kinetic
mixing. Such `dark' vortices could play a phenomenological role in models with
both cosmic strings and a dark gauge sector. When coupled to gravity they also
provide explicit ultra-violet completions for codimension-two brane-localized
flux, which arises in extra-dimensional models when the same flux that
stabilizes extra-dimensional size is also localized on space-filling branes
situated around the extra dimensions. We derive simple formulae for observables
such as defect angle, tension, localized flux and on-vortex curvature when
coupled to gravity, and show how all of these are insensitive to much of the
microscopic details of the solutions, and are instead largely dictated by
low-energy quantities. We derive the required effective description in terms of
a world-sheet brane action, and derive the matching conditions for its
couplings. We consider the case where the dimensions transverse to the bulk
compactify, and determine how the on- and off-vortex curvatures and other bulk
features depend on the vortex properties. We find that the brane-localized flux
does not gravitate, but just renormalizes the tension in a magnetic-field
independent way. The existence of an explicit UV completion puts the effective
description of these models on a more precise footing, verifying that
brane-localized flux can be consistent with sensible UV physics and resolving
some apparent paradoxes that can arise with a naive (but commonly used)
delta-function treatment of the brane's localization within the bulk.Comment: 36 pages + appendices, 7 figure
EFT for Vortices with Dilaton-dependent Localized Flux
We study how codimension-two objects like vortices back-react gravitationally
with their environment in theories (such as 4D or higher-dimensional
supergravity) where the bulk is described by a dilaton-Maxwell-Einstein system.
We do so both in the full theory, for which the vortex is an explicit classical
`fat brane' solution, and in the effective theory of `point branes' appropriate
when the vortices are much smaller than the scales of interest for their
back-reaction (such as the transverse Kaluza-Klein scale). We extend the
standard Nambu-Goto description to include the physics of flux-localization
wherein the ambient flux of the external Maxwell field becomes partially
localized to the vortex, generalizing the results of a companion paper to
include dilaton-dependence for the tension and localized flux. In the effective
theory, such flux-localization is described by the next-to-leading effective
interaction, and the boundary conditions to which it gives rise are known to
play an important role in how (and whether) the vortex causes supersymmetry to
break in the bulk. We track how both tension and localized flux determine the
curvature of the space-filling dimensions. Our calculations provide the tools
required for computing how scale-breaking vortex interactions can stabilize the
extra-dimensional size by lifting the dilaton's flat direction. For small
vortices we derive a simple relation between the near-vortex boundary
conditions of bulk fields as a function of the tension and localized flux in
the vortex action that provides the most efficient means for calculating how
physical vortices mutually interact without requiring a complete construction
of their internal structure. In passing we show why a common procedure for
doing so using a -function can lead to incorrect results. Our
procedures generalize straightforwardly to general co-dimension objects.Comment: 45 pages + appendix, 6 figure
Adherence to secondary stroke prevention strategies - Results from the German stroke data bank
Only very limited data are available concerning patient adherence to antithrombotic medication intended to prevent a recurrent stroke. Reduced adherence and compliance could significantly influence the effects of any stroke prevention strategies. This study from a large stroke data bank provides representative data concerning the rate of stroke victims adhering to their recommended preventive medication. During a 2-year period beginning January 1, 1998, all patients with acute stroke or TIA in 23 neurological departments with an acute stroke unit were included in the German Stroke Data Bank. Data were collected prospectively, reviewed, validated and processed in a central data management unit. Only 12 centers with a follow-up rate of 80% or higher were included in this evaluation. 3,420 patients were followed up after 3 months, and 2,640 patients were followed up one year after their stroke. After one year, 96% of all patients reported still adhere to at least one medical stroke prevention strategy. Of the patients receiving aspirin at discharge, 92.6% reported to use that medication after 3 months and 84% after one year, while 81.6 and 61.6% were the respective figures for clopidogrel, and 85.2 and 77.4% for oral anticoagulation. Most patients who changed medication switched from aspirin to clopidogrel. Under the conditions of this observational study, adherence to stroke prevention strategies is excellent. The highest adherence rate is noticed for aspirin and oral anticoagulation. After one year, very few patients stopped taking stroke preventive medication. Copyright (C) 2003 S. Karger AG, Basel
Cryogenic Calibration Setup for Broadband Complex Impedance Measurements
Reflection measurements give access to the complex impedance of a material on
a wide frequency range. This is of interest to study the dynamical properties
of various materials, for instance disordered superconductors. However
reflection measurements made at cryogenic temperature suffer from the
difficulty to reliably subtract the circuit contribution. Here we report on the
design and first tests of a setup able to precisely calibrate in situ the
sample reflection, at 4.2 K and up to 2 GHz, by switching and measuring, during
the same cool down, the sample and three calibration standards.Comment: (6 pages, 6 figures
Influence of age on outcome from thrombolysis in acute stroke: a controlled comparison in patients from the Virtual International Stroke Trials Archive (VISTA)
<p><b>Background and Purpose:</b> Thrombolysis for acute ischemic stroke in patients aged >80 years is not approved in some countries due to limited trial data in the very elderly. We compared outcomes between thrombolysed and nonthrombolysed (control) patients from neuroprotection trials to assess any influence of age on response.</p>
<p><b>Method:</b>Among patients with ischemic stroke of known age, pretreatment severity (baseline National Institutes of Health Scale Score), and 90-day outcome (modified Rankin Scale score; National Institutes of Health Scale score), we compared the distribution of modified Rankin score in thrombolysed patients with control subjects by Cochran-Mantel-Haenszel test and then logistic regression after adjustment for age and baseline National Institutes of Health Scale score. We examined patients ≤80 and ≥ 81 years separately and then each age decile.</p>
<p><b>Results:</b> Rankin data were available for 5817 patients, 1585 thrombolysed and 4232 control subjects; 20.5% were aged >80 years (mean ± SD, 85.1 ± 3.4 years). Baseline severity was higher among thrombolysed than control subjects (median National Institutes of Health Scale score 14 versus 13, P<0.05). The distribution of modified Rankin Scale scores was better among thrombolysed patients (P<0.0001; OR, 1.39; 95% CI, 1.26 to 1.54). The association occurred independently with similar magnitude among young (P<0.0001; OR, 1.42; 95% CI, 1.26 to 1.59) and elderly (P=0.002; OR, 1.34; 95% CI, 1.05 to 1.70) patients. ORs were consistent across all age deciles >30 years; outcomes assessed by National Institutes of Health Scale score gave supporting significant findings, and dichotomized modified Rankin Scale score outcomes were also consistent.</p>
<p><b>Conclusions:</b> Outcome after thrombolysis for acute ischemic stroke was significantly better than in control subjects. Despite the expected poorer outcomes among elderly compared with young patients that is independent of any treatment effect, the association between thrombolysis treatment and improved outcome is maintained in the very elderly. Age alone should not be a barrier to treatment.</p>
Accelerated motion and the self-force in Schwarzschild spacetime
We provide expansions of the Detweiler-Whiting singular field for motion
along arbitrary, planar accelerated trajectories in Schwarzschild spacetime. We
transcribe these results into mode-sum regularization parameters, computing
previously unknown terms that increase the convergence rate of the mode-sum. We
test our results by computing the self-force along a variety of accelerated
trajectories. For non-uniformly accelerated circular orbits we present results
from a new 1+1D discontinuous Galerkin time-domain code which employs an
effective-source. We also present results for uniformly accelerated circular
orbits and accelerated bound eccentric orbits computed within a
frequency-domain treatment. Our regularization results will be useful for
computing self-consistent self-force inspirals where the particle's worldline
is accelerated with respect to the background spacetime.Comment: 19 pages, 6 figures (accepted CQG special issue article version
Dynamical mean-field equations for strongly interacting fermionic atoms in a potential trap
We derive a set of dynamical mean-field equations for strongly interacting
fermionic atoms in a potential trap across a Feshbach resonance. Our derivation
is based on a variational ansatz, which generalizes the crossover wavefunction
to the inhomogeneous case, and the assumption that the order parameter is
slowly varying over the size of the Cooper pairs. The equations reduce to a
generalized time-dependent Gross-Pitaevskii equation on the BEC side of the
resonance. We discuss an iterative method to solve these mean-field equations,
and present the solution for a harmonic trap as an illustrating example to
self-consistently verify the approximations made in our derivation.Comment: replaced with the published versio
Hypervelocity binary stars: smoking gun of massive binary black holes
The hypervelocity stars recently found in the Galactic halo are expelled from
the Galactic center through interactions between binary stars and the central
massive black hole or between single stars and a hypothetical massive binary
black hole. In this paper, we demonstrate that binary stars can be ejected out
of the Galactic center with velocities up to 10^3 km/s, while preserving their
integrity, through interactions with a massive binary black hole. Binary stars
are unlikely to attain such high velocities via scattering by a single massive
black hole or through any other mechanisms. Based on the above theoretical
prediction, we propose a search for binary systems among the hypervelocity
stars. Discovery of hypervelocity binary stars, even one, is a definitive
evidence of the existence of a massive binary black hole in the Galactic
center.Comment: 5 pages, 3 figures, shortened version, ApJL in pres
- …