24,512 research outputs found
Recommended from our members
New methodology to measure the dynamics of ocular wave front aberrations during small amplitude changes of accommodation
We present a methodology to measure the systematic changes of aberrations induced by small changes in amplitude of accommodation. We use a method similar the one used in electrophysiology, where a periodic stimulus is presented to the eye and many periods (epochs) of the stimulus are averaged. Using this technique we have measured changes in higher order aberrations from 0.006μm to 0.02μm and correlated them with amplitude changes of accommodation as small as 0.14D. These small changes would have been undetectable without epoch averaging. The correlation coefficients of Zernike terms with defocus were calculated, demonstrating higher values of correlation for epoch averaging. The accurate monitoring of defocus at the start of the accommodation response has shown some interesting trends that may be related with the mechanisms behind accommodation
Dipolar glass polymers containing polarizable groups as dielectric materials for energy storage applications. A minireview
Materials that have high dielectric constants, high energy densities and minimum dielectric losses are highly desirable for use in capacitor devices. In this sense, polymers and polymer blends have several advantages over inorganic and composite materials, such as their flexibilities, high breakdown strengths, and low dielectric losses. Moreover, the dielectric performance of a polymer depends strongly on its electronic, atomic, dipolar, ionic, and interfacial polarizations. For these reasons, chemical modification and the introduction of specific functional groups (e.g., F, CN and R−S(=O)2−R´) would improve the dielectric properties, e.g., by varying the dipolar polarization. These functional groups have been demonstrated to have large dipole moments. In this way, a high orientational polarization in the polymer can be achieved. However, the decrease in the polarization due to dielectric dissipation and the frequency dependency of the polarization are challenging tasks to date. Polymers with high glass transition temperatures (Tg) that contain permanent dipoles can help to reduce dielectric losses due to conduction phenomena related to ionic mechanisms. Additionally, sub-Tg transitions (e.g., γ and β relaxations) attributed to the free rotational motions of the dipolar entities would increase the polarization of the material, resulting in polymers with high dielectric constants and, hopefully, dielectric losses that are as low as possible. Thus, polymer materials with high glass transition temperatures and considerable contributions from the dipolar polarization mechanisms of sub-Tg transitions are known as “dipolar glass polymers”. Considering this, the main aspects of this combined strategy and the future prospects of these types of material were discussed
Cluster Model for Near-barrier Fusion Induced by Weakly Bound and Halo Nuclei
The influence on the fusion process of coupling transfer/breakup channels is
investigated for the medium weight Li+Co systems in the vicinity
of the Coulomb barrier. Coupling effects are discussed within a comparison of
predictions of the Continuum Discretized Coupled-Channels model. Applications
to He+Co induced by the borromean halo nucleus He are also
proposed.Comment: 5 pages, 3 figures, FINUSTAR2 Conference, Aghios Nikolaus, Crete,
Greece. 10-14 September 200
A study of Schwinger-Dyson Equations for Yukawa and Wess-Zumino Models
We study Schwinger-Dyson equation for fermions in Yukawa and Wess-Zumino
models, in terms of dynamical mass generation and the wavefunction
renormalization function. In the Yukawa model with -type interaction
between scalars and fermions, we find a critical coupling in the quenched
approximation above which fermions acquire dynamical mass. This is shown to be
true beyond the bare 3-point vertex approximation. In the Wess-Zumino model,
there is a neat cancellation of terms leading to no dynamical mass for
fermions. We comment on the conditions under which these results are general
beyond the rainbow approximation and also on the ones under which supersymmetry
is preserved and the scalars as well do not acquire mass. The results are in
accordance with the non-renormalization theorem at least to order in
perturbation theory. In both the models, we also evaluate the wavefunction
renormalization function, analytically in the neighbourhood of the critical
coupling and numerically, away from it.Comment: 12 pages and 7 Postscript figures, accepted for publication in
Journal of Physics G: Nuclear and Particle Physic
Solving the two-center nuclear shell-model problem with arbitrarily-orientated deformed potentials
A general new technique to solve the two-center problem with
arbitrarily-orientated deformed realistic potentials is demonstrated, which is
based on the powerful potential separable expansion method. As an example,
molecular single-particle spectra for C + C Mg are
calculated using deformed Woods-Saxon potentials. These clearly show that
non-axial symmetric configurations play a crucial role in molecular resonances
observed in reaction processes for this system at low energy
Solar System experiments do not yet veto modified gravity models
The dynamical equivalence between modified and scalar-tensor gravity theories
is revisited and it is concluded that it breaks down in the limit to general
relativity. A gauge-independent analysis of cosmological perturbations in both
classes of theories lends independent support to this conclusion. As a
consequence, the PPN formalism of scalar-tensor gravity and Solar System
experiments do not veto modified gravity, as previously thought.Comment: 7 pages, latex, submitted to Phys. Rev.
- …