16,066 research outputs found

    Scaling limit for a drainage network model

    Full text link
    We consider the two dimensional version of a drainage network model introduced by Gangopadhyay, Roy and Sarkar, and show that the appropriately rescaled family of its paths converges in distribution to the Brownian web. We do so by verifying the convergence criteria proposed by Fontes, Isopi, Newman and Ravishankar.Comment: 15 page

    Evading the Few TeV Perturbative Limit in 3-3-1 Models

    Full text link
    Some versions of the electroweak SU(3)_L\otimesU(1)_X models cannot be treated within perturbation theory at energies of few TeV. An extended version for these models is proposed which is perturbative even at TeV scale posing no threatening inconsistency for test at future colliders. The extension presented here needs the addition of three octets of vector leptons, which leave three new leptonic isotriplets in the SU(2)_L\otimesU(1)_Y subgroup. With this representation content the running of the electroweak mixing angle, θW(μ)\theta_W (\mu), is such that sin2θW(μ)\sin^2\theta_W(\mu) decreases with the increase of the energy scale μ\mu, when only the light states of the Standard Model group are considered. The neutral exotic gauge boson ZZ^\prime marks then a new symmetry frontier.Comment: 15 pages, 2 figures, minor correction

    Charged shells in Lovelock gravity: Hamiltonian treatment and physical implications

    Full text link
    Using a Hamiltonian treatment, charged thin shells in spherically symmetric spacetimes in d dimensional Lovelock-Maxwell theory are studied. The coefficients of the theory are chosen to obtain a sensible theory, with a negative cosmological constant appearing naturally. After writing the action and the Lagrangian for a spacetime comprised of an interior and an exterior regions, with a thin shell as a boundary in between, one finds the Hamiltonian using an ADM description. For spherically symmetric spacetimes, one reduces the relevant constraints. The dynamic and constraint equations are obtained. The vacuum solutions yield a division of the theory into two branches, d-2k-1>0 (which includes general relativity, Born-Infeld type theories) and d-2k-1=0 (which includes Chern-Simons type theories), where k gives the highest power of the curvature in the Lagrangian. An additional parameter, chi, gives the character of the vacuum solutions. For chi=1 the solutions have a black hole character. For chi=-1 the solutions have a totally naked singularity character. The integration through the thin shell takes care of the smooth junction. The subsequent analysis is divided into two cases: static charged thin shell configurations, and gravitationally collapsing charged dust shells. Physical implications are drawn: if such a large extra dimension scenario is correct, one can extract enough information from the outcome of those collapses as to know, not only the actual dimension of spacetime, but also which particular Lovelock gravity, is the correct one.Comment: 25 pages, 9 figure

    The Left-Right SU(3)(L)xSU(3)(R)xU(1)(X) Model with Light, keV and Heavy Neutrinos

    Full text link
    We construct a full left-right model for the electroweak interactions based on the SU(3)LSU(3)RU(1)XSU(3)_{L}\otimes SU(3)_{R}\otimes U(1)_{X} gauge symmetry. The fermion content of the model is such that anomaly cancellation restricts the number of families to be a multiple of three. One of the most important features of the model is the joint presence of three light active neutrinos, three additional neutrinos at keV mass scale, and six heavy ones with masses around\textbf{101110^{11}} GeV. They form a well-motivated part of the spectrum in the sense they address challenging problems related to neutrino oscillation, warm dark matter, and baryogenesis through leptogenesis.Comment: 11 pages. Small corrections and typos fixed. Accepted for publication in PR

    Melão.

    Get PDF
    bitstream/item/124041/1/Rita.pd

    Renormalisation scheme for vector fields on T2 with a diophantine frequency

    Full text link
    We construct a rigorous renormalisation scheme for analytic vector fields on the 2-torus of Poincare type. We show that iterating this procedure there is convergence to a limit set with a ``Gauss map'' dynamics on it, related to the continued fraction expansion of the slope of the frequencies. This is valid for diophantine frequency vectors.Comment: final versio

    The peculiar Na-O anticorrelation of the bulge globular cluster NGC 6440

    Full text link
    Context. Galactic Globular Clusters (GCs) are essential tools to understand the earliest epoch of the Milky Way, since they are among the oldest objects in the Universe and can be used to trace its formation and evolution. Current studies using high resolution spectroscopy for many stars in each of a large sample of GCs allow us to develop a detailed observational picture about their formation and their relation with the Galaxy. However, it is necessary to complete this picture by including GCs that belong to all major Galactic components, including the Bulge. Aims. Our aim is to perform a detailed chemical analyses of the bulge GC NGC 6440 in order to determine if this object has Multiple Populations (MPs) and investigate its relation with the Bulge of the Milky Way and with the other Galactic GCs, especially those associated with the Bulge, which are largely poorly studied. Methods. We determined the stellar parameters and the chemical abundances of light elements (Na, Al), iron-peak elements (Fe, Sc, Mn, Co, Ni), α\alpha-elements (O, Mg, Si, Ca, Ti) and heavy elements (Ba, Eu) in seven red giant members of NGC 6440 using high resolution spectroscopy from FLAMES@UVES. Results. We found a mean iron content of [Fe/H]=-0.50±\pm0.03 dex in agreement with other studies. We found no internal iron spread. On the other hand, Na and Al show a significant intrinsic spread, but the cluster has no significant O-Na anticorrelation nor exhibits a Mg-Al anticorrelation. The α\alpha-elements show good agreement with the Bulge field star trend, although they are at the high alpha end and are also higher than those of other GCs of comparable metallicity. The heavy elements are dominated by the r-process, indicating a strong contribution by SNeII. The chemical analysis suggests an origin similar to that of the Bulge field stars.Comment: 12 pages, 13 figures, Accepted for publication in A&
    corecore