33,719 research outputs found
Responses of germination to light and to far-red radiation—can they be predicted from diaspores size?
This paper presents an update of a dataset of seed volumes previously released online and combines it with published data of the photoblastic response of germination of fruits or seeds (light or dark conditions), and of the effects of enhanced far-red radiation on germination. Some evidence was found to support that germination in larger diaspores might be indifferent to light or dark conditions. Similarly, germination in smaller diaspores might be inhibited by far-red radiation. However, the length, width, thickness, volume, shape, type of diaspore, or relative amplitude of volume is essentially useless to predict photoblastic responses or the effects of far-red radiation on germination of diaspores
Hydrodynamics of the Oscillating Wave Surge Converter in the open ocean
A potential flow model is derived for a large flap-type oscillating wave
energy converter in the open ocean. Application of the Green's integral theorem
in the fluid domain yields a hypersingular integral equation for the jump in
potential across the flap. Solution is found via a series expansion in terms of
the Chebyshev polynomials of the second kind and even order. Several
relationships are then derived between the hydrodynamic parameters of the
system. Comparison is made between the behaviour of the converter in the open
ocean and in a channel. The degree of accuracy of wave tank experiments aiming
at reproducing the performance of the device in the open ocean is quantified.
Parametric analysis of the system is then undertaken. It is shown that
increasing the flap width has the beneficial effect of broadening the bandwidth
of the capture factor curve. This phenomenon can be exploited in random seas to
achieve high levels of efficiency.Comment: Submitted to: EJMB/Fluids, 16/07/201
Bridge over troubled gas: clusters and associations under the SMC and LMC tidal stresses
We obtained SOAR telescope B and V photometry of 14 star clusters and 2
associations in the Bridge tidal structure connecting the LMC and SMC. These
objects are used to study the formation and evolution of star clusters and
associations under tidal stresses from the Clouds. Typical star clusters in the
Bridge are not richly populated and have in general relatively large diameters
(~30-35 pc), being larger than Galactic counterparts of similar age. Ages and
other fundamental parameters are determined with field-star decontaminated
photometry. A self-consistent approach is used to derive parameters for the
most-populated sample cluster NGC 796 and two young CMD templates built with
the remaining Bridge clusters. We find that the clusters are not coeval in the
Bridge. They range from approximately a few Myr (still related to optical HII
regions and WISE and Spitzer dust emission measurements) to about 100-200 Myr.
The derived distance moduli for the Bridge objects suggests that the Bridge is
a structure connecting the LMC far-side in the East to the foreground of the
SMC to the West. Most of the present clusters are part of the tidal dwarf
candidate D 1, which is associated with an H I overdensity. We find further
evidence that the studied part of the Bridge is evolving into a tidal dwarf
galaxy, decoupling from the Bridge.Comment: 15 pages, 15 figures, MNRAS, Accepted 2015 July 2
AdS nonlinear instability: moving beyond spherical symmetry
Anti-de Sitter (AdS) is conjectured to be nonlinear unstable to a weakly
turbulent mechanism that develops a cascade towards high frequencies, leading
to black hole formation [1,2]. We give evidence that the gravitational sector
of perturbations behaves differently from the scalar one studied in [2]. In
contrast with [2], we find that not all gravitational normal modes of AdS can
be nonlinearly extended into periodic horizonless smooth solutions of the
Einstein equation. In particular, we show that even seeds with a single normal
mode can develop secular resonances, unlike the spherically symmetric scalar
field collapse studied in [2]. Moreover, if the seed has two normal modes, more
than one resonance can be generated at third order, unlike the spherical
collapse of [2]. We also show that weak turbulent perturbative theory predicts
the existence of direct and inverse cascades, with the former dominating the
latter for equal energy two-mode seeds.Comment: 7 pages, no figures, 2 table
Cosmology at the boundary of de Sitter using the dS/QFT correspondence
Using the dS/QFT correspondence in the context of inflation allows for the study of interesting, otherwise inaccessible physics. In particular, by studying inflation via its dual field theory at the boundary of the de Sitter space, it may be possible to study a regime of strongly coupled gravity at early times. The purpose of this work is to completely express cosmological observables in terms of the free parameters of a dual field theory and to compare them with CMB data. In this way, constraints on the observational parameters constrains the validity of the strongly coupled inflation picture by imposing limits on the parameters of the field theory. The fit with data defines a limit for the consistency and validity of the approach taken and shows that, within this limit, the model is almost unconstrained, but quite predictive, producing power spectra of density perturbations extremely near scale invariance
Quasinormal modes of asymptotically flat rotating black holes
We study the main properties of general linear perturbations of rotating
black holes in asymptotically flat higher-dimensional spacetimes. In
particular, we determine the quasinormal mode (QNM) spectrum of singly spinning
and equal angular momenta Myers-Perry black holes (MP BHs). Emphasis is also
given to the timescale of the ultraspinning and bar-mode instabilities in these
two families of MP BHs. For the bar-mode instabilities in the singly spinning
MP BH, we find excellent agreement with our linear analysis and the non-linear
time evolution of Shibata and Yoshino for d=6,7 spacetime dimensions. We find
that d=5 singly spinning BHs are linearly stable. In the context of studying
general relativity in the large dimension limit, we obtain the QNM spectrum of
Schwarzschild BHs and rotating MP BHs for large dimensions. We identify two
classes of modes. For large dimensions, we find that in the limit of zero
rotation, unstable modes of the MP BHs connect to a class of Schwarzschild QNMs
that saturate to finite values.Comment: 52 pages. 25 figure
- …
