6,307 research outputs found
Coupled quantum-classical transport in silicon nanowires
We present an extended hydrodynamic model describing the transport of
electrons in the axial direction of a silicon nanowire. This model has been formulated by
closing the moment system derived from the Boltzmann equation on the basis of the maximum
entropy principle of Extended Thermodynamics, coupled to the Schr¨odinger-Poisson
system. Explicit closure relations for the high-order fluxes and the production terms are
obtained without any fitting procedure, including scattering of electrons with acoustic
and non polar optical phonons. We derive, using this model, the electron mobility
A statistical enhancement method for Direct Simulation Monte Carlo in semiconductor devices
The Multicomb variance reduction technique has been introduced in the Direct Simulation Monte Carlo for submicrometric semiconductors. We have implemented the method in a silicon diode n+ − n − n+ and demonstrated its
effectiveness. The steady-state statistical error and the figures of merit are obtained. The results of the simulations indicate that the method can enhance the high-energy distribution tail with a good accuracy
Quantum complementarity of microcavity polaritons
We present an experiment that probes polariton quantum correlations by
exploiting quantum complementarity. Specifically, we find that polaritons in
two distinct idler-modes interfere if and only if they share the same
signal-mode so that "which-way" information cannot be gathered. The
experimental results prove the existence of polariton pair correlations that
store the "which-way" information. This interpretation is confirmed by a
theoretical analysis of the measured interference visibility in terms of
quantum Langevin equations
An Ultraluminous Supersoft X-ray Source in M81: An Intermediate-Mass Black Hole?
Ultraluminous supersoft X-ray sources (ULSSS) exhibit supersoft spectra with
blackbody temperatures of 50-100 eV and bolometric luminosities above
erg s, and are possibly intermediate mass black holes (IMBHs) of
or massive white dwarfs that are progenitors of type Ia
supernovae. In this letter we report our optical studies of such a source in
M81, M81-ULS1, with HST archive observations. M81-ULS1 is identified with a
point-like object, the spectral energy distribution of which reveals a blue
component in addition to the companion of an AGB star. The blue component is
consistent with the power-law as expected from the geometrically-thin accretion
disk around an IMBH accretor, but inconsistent with the power-law as expected
from the X-ray irradiated flared accretion disk around a white dwarf accretor.
This result is strong evidence that M81-ULS1 is an IMBH instead of a white
dwarf.Comment: 12 pages, 1 table, 3 figure
Status of the EDELWEISS-II experiment
EDELWEISS is a direct dark matter search experiment situated in the low
radioactivity environment of the Modane Underground Laboratory. The experiment
uses Ge detectors at very low temperature in order to identify eventual rare
nuclear recoils induced by elastic scattering of WIMPs from our Galactic halo.
We present results of the commissioning of the second phase of the experiment,
involving more than 7 kg of Ge, that has been completed in 2007. We describe
two new types of detectors with active rejection of events due to surface
contamination. This active rejection is required in order to achieve the
physics goals of 10-8 pb cross-section measurement for the current phase
Two-loop Euler-Heisenberg effective actions from charged open strings
We present the multiloop partition function of open bosonic string theory in
the presence of a constant gauge field strength, and discuss its low-energy
limit. The result is written in terms of twisted determinants and differentials
on higher-genus Riemann surfaces, for which we provide an explicit
representation in the Schottky parametrization. In the field theory limit, we
recover from the string formula the two-loop Euler-Heisenberg effective action
for adjoint scalars minimally coupled to the background gauge field.Comment: 32 pages, 3 eps figures, plain LaTeX. References added, minor changes
to the text. Published version, affiliation correcte
Effect of sunlight exposure on anthocyanin and non-anthocyanin phenolic levels in pomegranate juices by high resolution mass spectrometry approach
Quali-quantitative analyses of anthocyanins and non-anthocyanin phenolic compounds performed with the use of liquid chromatography coupled with high resolution mass spectrometry, were evaluated in juice of pomegranate fruits (‘Dente di Cavallo’), in relation to different light exposures (North, South, West and East). A total of 16 compounds were identified, including phenolic acids, flavonoids, hydrolysable tannins, and anthocyanins, known for their health-promoting effects. Striking differences were observed about the total phenolic content, which was high in juices from fruits with east- and north-facing position, while it was lower in juices facing south. The greatest contents of total flavonoids and anthocyanins were recorded in fruit juices with southern exposure; however, there are no great differences in the content in phenolic acids. Tannins were mainly synthesized in fruit juices with West exposure. The results showed that the position within the tree had no significant effects on color juice, however, it significantly (p < 0.05) affected data on fruit weight, soluble sugars and juice yield. Remarkable synergies existed among polyphenols and phytochemicals in pomegranate juice, but collecting fruits with different solar exposure could enhance different health benefits, i.e., the juices with higher polyphenols content could have more anticancer effect or those with higher tannins content could have more antimicrobial effect
Roughness effect on the correction factor of surface velocity for rill flows
Flow velocity is one of the most important hydrodynamic variables for both channelized (rill and gullies) and interrill erosive phenomena. The dye tracer technique to measure surface flow velocity Vs is based on the measurement of the travel time of a tracer needed to cover a known distance. The measured Vs must be corrected to obtain the mean flow velocity V using a factor αv = V/Vs which is generally empirically deduced. The Vs measurement can be influenced by the method applied to time the travel of the dye-tracer and αv can vary in different flow conditions. Experiments were performed by a fixed bed small flume simulating a rill channel for two roughness conditions (sieved soil, gravel). The comparison between a chronometer-based (CB) and video-based (VB) technique to measure Vs was carried out. For each slope-discharge combination, 20 measurements of Vs, characterized by a sample mean Vm, were carried out. For both techniques, the frequency distributions of Vs/Vm resulted independent of slope and discharge. For a given technique, all measurements resulted normally distributed, with a mean equal to one, and featured by a low variability. Therefore, Vm was considered representative of surface flow velocity. Regardless of roughness, the Vm values obtained by the two techniques were very close and characterized by a good measurement precision. The developed analysis on αv highlighted that it is not correlated with Reynolds number for turbulent flow regime. Moreover, αv is correlated neither with the Froude number nor with channel slope. However, the analysis of the empirical frequency distributions of the correction factor demonstrated a slope effect. For each technique (CB, VB)-roughness (soil, gravel) combination, a constant correction factor was statistically representative even if resulted in less accurate V estimations compared to those yielded by the slope-specific correction factor
- …