225 research outputs found

    Metabolic Profiling of Geobacter sulfurreducens during Industrial Bioprocess Scale-Up

    Get PDF
    During the industrial scale-up of bioprocesses it is important to establish that the biological system has not changed significantly when moving from small laboratory-scale shake flasks or culturing bottles to an industrially relevant production level. Therefore, during upscaling of biomass production for a range of metal transformations, including the production of biogenic magnetite nanoparticles by Geobacter sulfurreducens, from 100-ml bench-scale to 5-liter fermentors, we applied Fourier transform infrared (FTIR) spectroscopy as a metabolic fingerprinting approach followed by the analysis of bacterial cell extracts by gas chromatography-mass spectrometry (GC-MS) for metabolic profiling. FTIR results clearly differentiated between the phenotypic changes associated with different growth phases as well as the two culturing conditions. Furthermore, the clustering patterns displayed by multivariate analysis were in agreement with the turbidimetric measurements, which displayed an extended lag phase for cells grown in a 5-liter bioreactor (24 h) compared to those grown in 100-ml serum bottles (6 h). GC-MS analysis of the cell extracts demonstrated an overall accumulation of fumarate during the lag phase under both culturing conditions, coinciding with the detected concentrations of oxaloacetate, pyruvate, nicotinamide, and glycerol-3-phosphate being at their lowest levels compared to other growth phases. These metabolites were overlaid onto a metabolic network of G. sulfurreducens, and taking into account the levels of these metabolites throughout the fermentation process, the limited availability of oxaloacetate and nicotinamide would seem to be the main metabolic bottleneck resulting from this scale-up process. Additional metabolite-feeding experiments were carried out to validate the above hypothesis. Nicotinamide supplementation (1 mM) did not display any significant effects on the lag phase of G. sulfurreducens cells grown in the 100-ml serum bottles. However, it significantly improved the growth behavior of cells grown in the 5-liter bioreactor by reducing the lag phase from 24 h to 6 h, while providing higher yield than in the 100-ml serum bottles

    Photosensitization of pancreatic cancer cells by cationic alkyl-porphyrins in free form or engrafted into POPC liposomes: The relationship between delivery mode and mechanism of cell death

    Get PDF
    Cationic porphyrins bearing an alkyl side chain of 14 (2b) or 18 (2d) carbons dramatically inhibit proliferation of pancreatic cancer cells following treatment with light. We have compared two different ways of delivering porphyrin 2d: either in free form or engrafted into palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine liposomes (L-2d). Cell cytometry shows that while free 2d is taken up by pancreatic cancer cells by active (endocytosis) and passive (membrane fusion) transports, L-2d is internalized solely by endocytosis. Confocal microscopy showed that free 2d co-localizes with the cell membrane and lysosomes, whereas L-2d partly co-localizes with lysosomes and ER. It is found that free 2d inhibits the KRAS-Nrf2-GPX4 axis and strongly triggers lipid peroxidation, resulting in cell death by ferroptosis. By contrast, L-2d does not affect the KRAS-Nrf2-GPX4 axis and activates cell death mainly through apoptosis. Overall, our study demonstrates for the first time that cationic alkyl porphyrins, which have a IC50 ~ 23 nM, activate a dual mechanism of cell death, ferroptosis and apoptosis, where the predominant form depends on the delivery mode

    Prodrug converting enzyme gene delivery by L. monocytogenes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Listeria monocytogenes </it>is a highly versatile bacterial carrier system for introducing protein, DNA and RNA into mammalian cells. The delivery of tumor antigens with the help of this carrier into tumor-bearing animals has been successfully carried out previously and it was recently reported that <it>L. monocytogenes </it>is able to colonize and replicate within solid tumors after local or even systemic injection.</p> <p>Methods</p> <p>Here we report on the delivery of two prodrug converting enzymes, purine-deoxynucleoside phosphorylase (PNP) and a fusion protein consisting of yeast cytosine deaminase and uracil phosphoribosyl transferase (FCU1) into cancer cells in culture by <it>L. monocytogenes</it>. Transfer of the prodrug converting enzymes was achieved by bacterium mediated transfer of eukaryotic expression plasmids or by secretion of the proteins directly into the host cell cytosol by the infecting bacteria.</p> <p>Results</p> <p>The results indicate that conversion of appropriate prodrugs to toxic drugs in the cancer cells occured after both procedures although <it>L. monocytogenes</it>-mediated bactofection proved to be more efficient than enzyme secretion 4T1, B16 and COS-1 tumor cells. Exchanging the constitutively P<sub>CMV</sub>-promoter with the melanoma specific P<sub>4xTETP</sub>-promoter resulted in melanoma cell-specific expression of the prodrug converting enzymes but reduced the efficiencies.</p> <p>Conclusion</p> <p>These experiments open the way for bacterium mediated tumor specific activation of prodrugs in live animals with tumors.</p

    <i>Gaia</i> Data Release 1. Summary of the astrometric, photometric, and survey properties

    Get PDF
    Context. At about 1000 days after the launch of Gaia we present the first Gaia data release, Gaia DR1, consisting of astrometry and photometry for over 1 billion sources brighter than magnitude 20.7. Aims. A summary of Gaia DR1 is presented along with illustrations of the scientific quality of the data, followed by a discussion of the limitations due to the preliminary nature of this release. Methods. The raw data collected by Gaia during the first 14 months of the mission have been processed by the Gaia Data Processing and Analysis Consortium (DPAC) and turned into an astrometric and photometric catalogue. Results. Gaia DR1 consists of three components: a primary astrometric data set which contains the positions, parallaxes, and mean proper motions for about 2 million of the brightest stars in common with the HIPPARCOS and Tycho-2 catalogues – a realisation of the Tycho-Gaia Astrometric Solution (TGAS) – and a secondary astrometric data set containing the positions for an additional 1.1 billion sources. The second component is the photometric data set, consisting of mean G-band magnitudes for all sources. The G-band light curves and the characteristics of ∌3000 Cepheid and RR-Lyrae stars, observed at high cadence around the south ecliptic pole, form the third component. For the primary astrometric data set the typical uncertainty is about 0.3 mas for the positions and parallaxes, and about 1 mas yr−1 for the proper motions. A systematic component of ∌0.3 mas should be added to the parallax uncertainties. For the subset of ∌94 000 HIPPARCOS stars in the primary data set, the proper motions are much more precise at about 0.06 mas yr−1. For the secondary astrometric data set, the typical uncertainty of the positions is ∌10 mas. The median uncertainties on the mean G-band magnitudes range from the mmag level to ∌0.03 mag over the magnitude range 5 to 20.7. Conclusions. Gaia DR1 is an important milestone ahead of the next Gaia data release, which will feature five-parameter astrometry for all sources. Extensive validation shows that Gaia DR1 represents a major advance in the mapping of the heavens and the availability of basic stellar data that underpin observational astrophysics. Nevertheless, the very preliminary nature of this first Gaia data release does lead to a number of important limitations to the data quality which should be carefully considered before drawing conclusions from the data

    Understanding the limitations of radiation-induced cell cycle checkpoints

    Get PDF
    The DNA damage response pathways involve processes of double-strand break (DSB) repair and cell cycle checkpoint control to prevent or limit entry into S phase or mitosis in the presence of unrepaired damage. Checkpoints can function to permanently remove damaged cells from the actively proliferating population but can also halt the cell cycle temporarily to provide time for the repair of DSBs. Although efficient in their ability to limit genomic instability, checkpoints are not foolproof but carry inherent limitations. Recent work has demonstrated that the G1/S checkpoint is slowly activated and allows cells to enter S phase in the presence of unrepaired DSBs for about 4–6 h post irradiation. During this time, only a slowing but not abolition of S-phase entry is observed. The G2/M checkpoint, in contrast, is quickly activated but only responds to a level of 10–20 DSBs such that cells with a low number of DSBs do not initiate the checkpoint or terminate arrest before repair is complete. Here, we discuss the limitations of these checkpoints in the context of the current knowledge of the factors involved. We suggest that the time needed to fully activate G1/S arrest reflects the existence of a restriction point in G1-phase progression. This point has previously been defined as the point when mitogen starvation fails to prevent cells from entering S phase. However, cells that passed the restriction point can respond to DSBs, albeit with reduced efficiency

    COVID-19-related absence among surgeons: development of an international surgical workforce prediction model

    Get PDF
    Background: During the initial COVID-19 outbreak up to 28.4 million elective operations were cancelled worldwide, in part owing to concerns that it would be unsustainable to maintain elective surgery capacity because of COVID-19-related surgeon absence. Although many hospitals are now recovering, surgical teams need strategies to prepare for future outbreaks. This study aimed to develop a framework to predict elective surgery capacity during future COVID-19 outbreaks. Methods: An international cross-sectional study determined real-world COVID-19-related absence rates among surgeons. COVID-19-related absences included sickness, self-isolation, shielding, and caring for family. To estimate elective surgical capacity during future outbreaks, an expert elicitation study was undertaken with senior surgeons to determine the minimum surgical staff required to provide surgical services while maintaining a range of elective surgery volumes (0, 25, 50 or 75 per cent). Results Based on data from 364 hospitals across 65 countries, the COVID-19-related absence rate during the initial 6 weeks of the outbreak ranged from 20.5 to 24.7 per cent (mean average fortnightly). In weeks 7–12, this decreased to 9.2–13.8 per cent. At all times during the COVID-19 outbreak there was predicted to be sufficient surgical staff available to maintain at least 75 per cent of regular elective surgical volume. Overall, there was predicted capacity for surgeon redeployment to support the wider hospital response to COVID-19. Conclusion: This framework will inform elective surgical service planning during future COVID-19 outbreaks. In most settings, surgeon absence is unlikely to be the factor limiting elective surgery capacity

    Strategies to Target Tumor Immunosuppression

    Get PDF
    The tumor microenvironment is currently in the spotlight of cancer immunology research as a key factor impacting tumor development and progression. While antigen-specific immune responses play a crucial role in tumor rejection, the tumor hampers these immune responses by creating an immunosuppressive microenvironment. Recently, major progress has been achieved in the field of cancer immunotherapy, and several groundbreaking clinical trials demonstrated the potency of such therapeutic interventions in patients. Yet, the responses greatly vary among individuals. This calls for the rational design of more efficacious cancer immunotherapeutic interventions that take into consideration the “immune signature” of the tumor. Multimodality treatment regimens that aim to enhance intratumoral homing and activation of antigen-specific immune effector cells, while simultaneously targeting tumor immunosuppression, are pivotal for potent antitumor immunity

    Euclid preparation. XXIX. Water ice in spacecraft part I: The physics of ice formation and contamination

    Get PDF
    Molecular contamination is a well-known problem in space flight. Water is the most common contaminant and alters numerous properties of a cryogenic optical system. Too much ice means that Euclid's calibration requirements and science goals cannot be met. Euclid must then be thermally decontaminated, a long and risky process. We need to understand how iced optics affect the data and when a decontamination is required. This is essential to build adequate calibration and survey plans, yet a comprehensive analysis in the context of an astrophysical space survey has not been done before. In this paper we look at other spacecraft with well-documented outgassing records, and we review the formation of thin ice films. A mix of amorphous and crystalline ices is expected for Euclid. Their surface topography depends on the competing energetic needs of the substrate-water and the water-water interfaces, and is hard to predict with current theories. We illustrate that with scanning-tunnelling and atomic-force microscope images. Industrial tools exist to estimate contamination, and we must understand their uncertainties. We find considerable knowledge errors on the diffusion and sublimation coefficients, limiting the accuracy of these tools. We developed a water transport model to compute contamination rates in Euclid, and find general agreement with industry estimates. Tests of the Euclid flight hardware in space simulators did not pick up contamination signals; our in-flight calibrations observations will be much more sensitive. We must understand the link between the amount of ice on the optics and its effect on Euclid's data. Little research is available about this link, possibly because other spacecraft can decontaminate easily, quenching the need for a deeper understanding. In our second paper we quantify the various effects of iced optics on spectrophotometric data.Comment: 35 pages, 22 figures, A&A in press. Changes to previous version: language edits, added Z. Bolag as author in the arxiv PDF (was listed in the ASCII author list and in the journal PDF, but not in the arxiv PDF). This version is identical to the journal versio

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic
    • 

    corecore