2,248 research outputs found
Cannonballs in the context of Gamma Ray Bursts: Formation sites ?
We investigate possible formation sites of the cannonballs (in the gamma ray
bursts context) by calculating their physical parameters, such as density,
magnetic field and temperature close to the origin. Our results favor scenarios
where the cannonballs form as instabilities (knots) within magnetized jets from
hyperaccreting disks. These instabilities would most likely set in beyond the
light cylinder where flow velocity with Lorentz factors as high as 2000 can be
achieved. Our findings challenge the cannonball model of gamma ray bursts if
these indeed form inside core-collapse supernovae (SNe) as suggested in the
literature; unless hyperaccreting disks and the corresponding jets are common
occurrences in core-collapse SNe.Comment: 10 pages, 12 figure
SN 1999ga: a low-luminosity linear type II supernova?
Type II-linear supernovae are thought to arise from progenitors that have
lost most of their H envelope by the time of the explosion, and they are poorly
understood because they are only occasionally discovered. It is possible that
they are intrinsically rare, but selection effects due to their rapid
luminosity evolution may also play an important role in limiting the number of
detections. In this context, the discovery of a subluminous type II-linear
event is even more interesting. We investigate the physical properties and
characterise the explosion site of the type II SN 1999ga, which exploded in the
nearby spiral galaxy NGC 2442. Spectroscopic and photometric observations of SN
1999ga allow us to constrain the energetics of the explosion and to estimate
the mass of the ejected material, shedding light on the nature of the
progenitor star in the final stages of its life. The study of the environment
in the vicinity of the explosion site provides information on a possible
relation between these unusual supernovae and the properties of the galaxies
hosting them. Despite the lack of early-time observations, we provide
reasonable evidence that SN 1999ga was probably a type II-linear supernova that
ejected a few solar masses of material, with a very small amount of radioactive
elements of the order of 0.01 solar masses.Comment: 11 pages, 9 figures. Accepted for publication in A&A (March 28, 2009
Measurement of triple gauge boson couplings from W⁺W⁻ production at LEP energies up to 189 GeV
A measurement of triple gauge boson couplings is presented, based on W-pair data recorded by the OPAL detector at LEP during 1998 at a centre-of-mass energy of 189 GeV with an integrated luminosity of 183 pb⁻¹. After combining with our previous measurements at centre-of-mass energies of 161–183 GeV we obtain κ = 0.97_{-0.16}^{+0.20}, g_{1}^{z} = 0.991_{-0.057}^{+0.060} and λ = -0.110_{-0.055}^{+0.058}, where the errors include both statistical and systematic uncertainties and each coupling is determined by setting the other two couplings to their Standard Model values. These results are consistent with the Standard Model expectations
The complex light-curve of the afterglow of GRB071010A
We present and discuss the results of an extensive observational campaign
devoted to GRB071010A, a long-duration gamma-ray burst detected by the Swift
satellite. This event was followed for almost a month in the
optical/near-infrared (NIR) with various telescopes starting from about 2min
after the high-energy event. Swift-XRT observations started only later at about
0.4d. The light-curve evolution allows us to single out an initial rising phase
with a maximum at about 7min, possibly the afterglow onset in the context of
the standard fireball model, which is then followed by a smooth decay
interrupted by a sharp rebrightening at about 0.6d. The rebrightening was
visible in both the optical/NIR and X-rays and can be interpreted as an episode
of discrete energy injection, although various alternatives are possible. A
steepening of the afterglow light curve is recorded at about 1d. The entire
evolution of the optical/NIR afterglow is consistent with being achromatic.
This could be one of the few identified GRB afterglows with an achromatic break
in the X-ray through the optical/NIR bands. Polarimetry was also obtained at
about 1d, just after the rebrightening and almost coincident with the
steepening. This provided a fairly tight upper limit of 0.9% for the
polarized-flux fraction.Comment: 11 pages, 3 figures, MNRAS, in pres
The complex light-curve of the afterglow of GRB071010A
We present and discuss the results of an extensive observational campaign
devoted to GRB071010A, a long-duration gamma-ray burst detected by the Swift
satellite. This event was followed for almost a month in the
optical/near-infrared (NIR) with various telescopes starting from about 2min
after the high-energy event. Swift-XRT observations started only later at about
0.4d. The light-curve evolution allows us to single out an initial rising phase
with a maximum at about 7min, possibly the afterglow onset in the context of
the standard fireball model, which is then followed by a smooth decay
interrupted by a sharp rebrightening at about 0.6d. The rebrightening was
visible in both the optical/NIR and X-rays and can be interpreted as an episode
of discrete energy injection, although various alternatives are possible. A
steepening of the afterglow light curve is recorded at about 1d. The entire
evolution of the optical/NIR afterglow is consistent with being achromatic.
This could be one of the few identified GRB afterglows with an achromatic break
in the X-ray through the optical/NIR bands. Polarimetry was also obtained at
about 1d, just after the rebrightening and almost coincident with the
steepening. This provided a fairly tight upper limit of 0.9% for the
polarized-flux fraction.Comment: 11 pages, 3 figures, MNRAS, in pres
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices
The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
Extracting the size of the cosmic electron-positron anomaly
We isolated the anomalous part of the cosmic electron-positron flux within a
Bayesian likelihood analysis. Using 219 recent cosmic ray spectral data points,
we inferred the values of selected cosmic ray propagation parameters. In the
context of the propagation model coded in GalProp, we found a significant
tension between the electron positron related and the rest of the fluxes.
Interpreting this tension as the presence of an anomalous component in the
electron-positron related data, we calculated background predictions for PAMELA
and Fermi-LAT based on the non-electron-positron related fluxes. We found a
deviation between the data and the predicted background even when
uncertainties, including systematics, were taken into account. We identified
this deviation with the anomalous electron-positron contribution. We briefly
compared this model independent signal to some theoretical results predicting
such an anomaly.Comment: 35 pages with 4 Figures and 2 Tables. References added, accepted for
publication in Ap
Measurement of the cross-section and charge asymmetry of bosons produced in proton-proton collisions at TeV with the ATLAS detector
This paper presents measurements of the and cross-sections and the associated charge asymmetry as a
function of the absolute pseudorapidity of the decay muon. The data were
collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with
the ATLAS experiment at the LHC and correspond to a total integrated luminosity
of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements
varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the
1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured
with an uncertainty between 0.002 and 0.003. The results are compared with
predictions based on next-to-next-to-leading-order calculations with various
parton distribution functions and have the sensitivity to discriminate between
them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables,
submitted to EPJC. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
- …