8 research outputs found
The effect of multitasking on the communication skill and clinical skills of medical students
Abstract Background Mental workload is an abstract concept that perceives cognition as the brain having a small and finite capacity to process information, with high levels of workload associated with poor performance and error. While an individual may be able to complete two different tasks individually, a combination of tasks may lead to cognitive overload and poor performance. In many high-risk industries, it is common to measure mental workload and then to redesign tasks until cognitive overload is avoided. This study aimed to measure the effect of multitasking on the mental workload and performance of medical students completing single and combined clinical tasks. Methods Medical students who had completed basic clinical skills training in a single undergraduate Medical School completed four standardised tasks for a total of four minutes each, consisting of: inactivity, listening, venepuncture and a combination of listening and venepuncture. Task performance was measured using standard binary checklists and with mental workload measured using a secondary task method. Results The tasks were successfully completed by 40 subjects and as expected, mental workload increased with task complexity. Combining the two tasks showed no difference in the associated mental workload and performance at venepuncture (pβ=β0.082) However, during the combined task, listening appeared to deteriorate (pβ<β0.001). Conclusions If staff are expected to simultaneously complete multiple tasks then they may preferentially shed communication tasks in order to maintain their performance of physical tasks, leading to the appearance of poor communication skills. Although this is a small-scale study in medical students it suggests that the active assessment and management of clinician workload in busy clinical settings may be an effective strategy to improve doctor-patient communication
C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon
Virus-like particles (VLPs) have not been observed in Caenorhabditis germ cells, although nematode genomes contain low numbers of retrotransposon and retroviral sequences. We used electron microscopy to search for VLPs in various wild strains of Caenorhabditis, and observed very rare candidate VLPs in some strains, including the standard laboratory strain of C. elegans, N2. We identified the N2 VLPs as capsids produced by Cer1, a retrotransposon in the Gypsy/Ty3 family of retroviruses/retrotransposons. Cer1 expression is age and temperature dependent, with abundant expression at 15Β°C and no detectable expression at 25Β°C, explaining how VLPs escaped detection in previous studies. Similar age and temperature-dependent expression of Cer1 retrotransposons was observed for several other wild strains, indicating that these properties are common, if not integral, features of this retroelement. Retrotransposons, in contrast to DNA transposons, have a cytoplasmic stage in replication, and those that infect non-dividing cells must pass their genomic material through nuclear pores. In most C. elegans germ cells, nuclear pores are largely covered by germline-specific organelles called P granules. Our results suggest that Cer1 capsids target meiotic germ cells exiting pachytene, when free nuclear pores are added to the nuclear envelope and existing P granules begin to be removed. In pachytene germ cells, Cer1 capsids concentrate away from nuclei on a subset of microtubules that are exceptionally resistant to microtubule inhibitors; the capsids can aggregate these stable microtubules in older adults, which exhibit a temperature-dependent decrease in egg viability. When germ cells exit pachytene, the stable microtubules disappear and capsids redistribute close to nuclei that have P granule-free nuclear pores. This redistribution is microtubule dependent, suggesting that capsids that are released from stable microtubules transfer onto new, dynamic microtubules to track toward nuclei. These studies introduce C. elegans as a model to study the interplay between retroelements and germ cell biology