30 research outputs found

    Does left atrial volume affect exercise capacity of heart transplant recipients?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Heart transplant (HT) recipients demonstrate limited exercise capacity compared to normal patients, very likely for multiple reasons. In this study we hypothesized that left atrial volume (LAV), which is known to predict exercise capacity in patients with various cardiac pathologies including heart failure and hypertrophic cardiomyopathy is associated with limited exercise capacity of HT recipients.</p> <p>Methods</p> <p>We analyzed 50 patients [age 57 ±2 (SEM), 12 females] who had a post-HT echocardiography and cardiopulmonary exercise test (CPX) within 9 weeks time at clinic follow up. The change in LAV (ΔLAV) was also computed as the difference in LAV from the preceding one-year to the study echocardiogram. Correlations among the measured parameters were assessed with a Pearson's correlation analysis.</p> <p>Results</p> <p>LAV (n = 50) and ΔLAV (n = 40) indexed to body surface area were 40.6 ± 11.5 ml·m<sup>-2 </sup>and 1.9 ± 8.5 ml·m<sup>-2·</sup>year<sup>-1</sup>, data are mean ± SD, respectively. Indexed LAV and ΔLAV were both significantly correlated with the ventilatory efficiency, assessed by the VE/VCO<sub>2 </sub>slope (r = 0.300, p = 0.038; r = 0.484, p = 0.002, respectively). LAV showed a significant correlation with peak oxygen consumption (r = -0.328, p = 0.020).</p> <p>Conclusions</p> <p>Although our study is limited by a retrospective study design and relatively small number of patients, our findings suggest that enlarged LAV and increasing change in LAV is associated with the diminished exercise capacity in HT recipients and warrants further investigation to better elucidate this relationship.</p

    Mammalian Target of Rapamycin Is a Therapeutic Target for Murine Ovarian Endometrioid Adenocarcinomas with Dysregulated Wnt/β-Catenin and PTEN

    Get PDF
    Despite the fact that epithelial ovarian cancers are the leading cause of death from gynecological cancer, very little is known about the pathophysiology of the disease. Mutations in the WNT and PI3K pathways are frequently observed in the human ovarian endometrioid adenocarcinomas (OEAs). However, the role of WNT/β-catenin and PTEN/AKT signaling in the etiology and/or progression of this disease is currently unclear. In this report we show that mice with a gain-of-function mutation in β-catenin that leads to dysregulated nuclear accumulation of β-catenin expression in the ovarian surface epithelium (OSE) cells develop indolent, undifferentiated tumors with both mesenchymal and epithelial characteristics. Combining dysregulated β-catenin with homozygous deletion of PTEN in the OSE resulted in development of significantly more aggressive tumors, which was correlated with inhibition of p53 expression and cellular senescence. Induced expression of both mTOR kinase, a master regulator of proliferation, and phosphorylation of its downstream target, S6Kinase was also observed in both the indolent and aggressive mouse tumors, as well as in human OEA with nuclear β-catenin accumulation. Ectopic allotransplants of the mouse ovarian tumor cells with a gain-of-function mutation in β-catenin and PTEN deletion developed into tumors with OEA histology, the growth of which were significantly inhibited by oral rapamycin treatment. These studies demonstrate that rapamycin might be an effective therapeutic for human ovarian endometrioid patients with dysregulated Wnt/β-catenin and Pten/PI3K signaling

    The failing human heart is unable to use the Frank-Starling mechanism.

    No full text
    There is evidence that the failing human left ventricle in vivo subjected to additional preload is unable to use the Frank-Starling mechanism. The present study compared the force-tension relation in human nonfailing and terminally failing (heart transplants required because of dilated cardiomyopathy) myocardium. Isometric force of contraction of electrically driven left ventricular papillary muscle strips was studied under various preload conditions (2 to 20 mN). To investigate the influence of inotropic stimulation, the force-tension relation was studied in the presence of the cardiac glycoside ouabain. In skinned-fiber preparations of the left ventricle, developed tension was measured after stretching the preparations to 150% of the resting length. To evaluate the length-dependent activation of cardiac myofibrils by Ca2+ in failing and nonfailing myocardium, the tension-Ca2+ relations were also measured. After an increase of preload, the force of contraction gradually increased in nonfailing myocardium but was unchanged in failing myocardium. There were no differences in resting tension, muscle length, or cross-sectional area of the muscles between both groups. Pretreatment with ouabain (0.02 mumol/L) restored the force-tension relation in failing myocardium and preserved the force-tension relation in nonfailing tissue. In skinned-fiber preparations of the same hearts, developed tension increased significantly after stretching only in preparations from nonfailing but not from failing myocardium. The Ca2+ sensitivity of skinned fibers was significantly higher in failing myocardium (EC50, 1.0; 95% confidence limit, 0.88 to 1.21 mumol/L) compared with nonfailing myocardium (EC50, 1.7; 95% confidence limit, 1.55 to 1.86 mumol/L). After increasing the fiber length by stretching, a significant increase in the sensitivity of the myofibrils to Ca2+ was observed in nonfailing but not in failing myocardium. These experiments provide evidence for an impaired force-tension relation in failing human myocardium. On the subcellular level, this phenomenon might be explained by a failure of the myofibrils to increase the Ca2+ sensitivity after an increase of the sarcomere length
    corecore