40 research outputs found

    Identification of aerosol type over the Arabian Sea in the premonsoon season during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    No full text
    A discrimination of the different aerosol types over the Arabian Sea (AS) during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB-06) is made using values of aerosol optical depth (AOD) at 500 nm (AOD500) and à ngström exponent (α) in the spectral band 340-1020 nm (α340-1020). For this purpose, appropriate thresholds for AOD500 and α340-1020 are applied. It is shown that a single aerosol type in a given location over the AS can exist only under specific conditions while the presence of mixed aerosols is the usual situation. Analysis indicates that the dominant aerosol types change significantly in the different regions (coastal, middle, and far) of AS. Thus the urban/industrial aerosols are mainly observed in coastal AS, the desert dust particles occur in the middle and northern AS, while clear maritime conditions mainly occur in far AS. Spectral AOD and à ngström exponent data were analyzed to obtain information about the adequacy of the simple use of the à ngström exponent and spectral variation of a for characterizing the aerosols. Using the least squares method, α is calculated in the spectral interval 340-1020 nm along with the coefficients a1 and a2 of the second-order polynomial fit to the plotted logarithm of AOD versus the logarithm of wavelength. The results show that the spectral curvature can effectively be used as a tool for their discrimination, since the fine mode aerosols exhibit negative curvature, while the coarse mode particles exhibit positive curvature. The correlation between the coefficients a1 and a2 with the à ngström exponent, and the atmospheric turbidity, is further investigated

    Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    No full text
    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO42 − and NO3−) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO42 − and NO3−). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6 μg m− 3 (annual mean of 124.6 ± 87.9 μg m− 3) exhibiting higher night-time (129.4 μg m− 3) than daytime (103.8 μg m− 3) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3−and SO42 −, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R2 = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day− 1) due to agricultural burning effects during the 2012 post-monsoon season

    Implementation of Perez-Dumortier Calibration Algorithm

    No full text
    To avoid the unnecessary needs to travel to high altitude for sunphotometers calibration, Perez-Dumotier calibration algorithm has been used as an objective means to select the right intensity data so that the calibration can be performed at any altitude levels. The governing theory of the algorithm was discussed in the previous chapter. This chapter presents information on how to implement the Perez-Dumotier calibration algorithm using actual field measurement. The implementation of the filtration procedure in step-by-step is discussed to render better framework of the proposed calibration algorithm. The aerosol retrieval inversion uses the extraterrestrial constant obtained from the final Langley plot to calculate retrieved AOD. The implementation example uses irradiance-matched technique by i-SMARTS radiative transfer code to derive corresponding reference AOD for validation purposes. The reliability of the technique was substantiated by radiative closure experiment to verify the promising direct solar irradiance to accurately derive the reference AOD values

    Multi-decadal variation of the net downward shortwave radiation over south Asia: The solar dimming effect

    No full text
    The solar radiation flux at the earth's surface has gone through decadal changes of decreasing and increasing trends over the globe. These phenomena known as dimming and brightening, respectively, have attracted the scientific interest in relation to the changes in radiative balance and climate. Despite the interest in the solar dimming/brightening phenomenon in various parts of the world, south Asia has not attracted great scientific attention so far. The present work uses the net downward shortwave radiation (NDSWR) values derived from satellites (Modern Era Retrospective-analysis for Research and Applications, MERRA 2D) in order to examine the multi-decadal variations in the incoming solar radiation over south Asia for the period of 1979-2004. From the analysis it is seen that solar dimming continues over south Asia with a trend of -0.54 Wm(-2) yr(-1). Assuming clear skies an average decrease of -0.05 Wm(-2)yr(-1) in NDSWR was observed, which is attributed to increased aerosol emissions over the region. There is evidence that the increase in cloud optical depth plays the major role for the solar dimming over the area. The cloud optical depth (MERRA retrievals) has increased by 10.7% during the study period, with the largest increase to be detected for the high-level (atmospheric pressure P < 400 hPa) clouds (31.2%). Nevertheless, the decrease in solar radiation and the role of aerosols and clouds exhibit large monthly and seasonal variations directly affected by the local monsoon system, the anthropogenic and natural aerosol emissions. All these aspects are examined in detail aiming at shedding light into the solar dimming phenomenon over a densely populated area. (C) 2011 Elsevier Ltd. All rights reserved
    corecore