4 research outputs found
Adapting Wine Grape Ripening to Global Change Requires a Multi-Trait Approach
In winegrowing regions around the world increasing temperature associated with climate change is responsible for earlier harvests and is implicated in undesirably high sugar concentrations at harvest. Determining the suitability of grapevine varieties in existing or new winegrowing areas has often been based on temperature, without considering other factors. The purpose of this study was to quantify key berry sugar accumulation traits and characterize their plasticity in response to several climate variables. Data was collected from 36 different cultivars over 7 years (2012-2018) from an experimental vineyard in Bordeaux, France. Sugar amounts were obtained through weekly berry sampling starting at mid-veraison and continuing until after technological maturity. The variation in sugar accumulation traits for all cultivars, when considered together, were well explained by cultivar, year, and their interaction, highlighting the relative roles of genetic variation and phenotypic plasticity. Sugar accumulation traits were affected by antecedent and concurrent climate factors such as photosynthetically active radiation, temperature, and vine water status, whether before, or after mid-veraison. In addition, other traits such as berry weight at mid-veraison and date of mid-veraison had an important influence on sugar accumulation traits. More notably, the relative importance of these factors varied significantly by cultivar. The specific physiological mechanisms driving the plasticity of these traits remain to be identified. Adaptation to climate change cannot be based on temperature alone and crop responses cannot be generalized across genotypes, even within species.COntinental To coastal Ecosystems: evolution, adaptability and governanc
The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco
International audiencePrevious work has shown that transgenic tobacco plants constitutively over-expressing the Vitis vinifera L. transcription factor VvWRKY2 exhibit reduced susceptibility to necrotrophic fungal pathogens, suggesting that this transcription factor plays a role in grapevine response to phytopathogens. The work presented here characterizes the modifications in cell wall structure observed in the stems and petioles of these transgenic plants. Histochemical stainings of stem and petiole cross-sections using phloroglucinol or MaĂŒle reagents revealed a delay in xylem formation, particularly in the petioles, and differences in lignin composition. Evaluation of lignin quantity and quality showed a decrease in the syringyl/guaiacyl ratio in both stem and petioles. Expression analysis using RT-PCR and potato microarrays showed that tobacco plants over-expressing VvWRKY2 exhibited altered expression of genes involved in lignin biosynthesis pathway and cell wall formation. The ability of VvWRKY2 to activate the promoter of the VvC4H gene, which is involved in the lignin biosynthetic pathway, was confirmed by transient transcriptional activation assays in tobacco protoplasts. Moreover, in situ hybridization revealed that VvWRKY2 is specifically expressed in cells undergoing lignification in young grapevine stems. Together, these results confirm that VvWRKY2 plays a role in regulating lignification in grapevine, possibly in response to biotic or abiotic stresses
An update on the impact of climate change in viticulture and potential adaptations
Climate change will impose increasingly warm and dry conditions on vineyards. Wine quality and yield are strongly influenced by climatic conditions and depend on complex interactions between temperatures, water availability, plant material, and viticultural techniques. In established winegrowing regions, growers have optimized yield and quality by choosing plant material and viticultural techniques according to local climatic conditions, but as the climate changes, these will need to be adjusted. Adaptations to higher temperatures include changing plant material (e.g., rootstocks, cultivars and clones) and modifying viticultural techniques (e.g., changing trunk height, leaf area to fruit weight ratio, timing of pruning) such that harvest dates are maintained in the optimal period at the end of September or early October in the Northern Hemisphere. Vineyards can be made more resilient to drought by planting drought resistant plant material, modifying training systems (e.g., goblet bush vines, or trellised vineyards at wider row spacing), or selecting soils with greater soil water holding capacity. While most vineyards in Europe are currently dry-farmed, irrigation may also be an option to grow sustainable yields under increasingly dry conditions but consideration must be given to associated impacts on water resources and the environment