844 research outputs found
Analysis of argonaute 4-associated long non-coding RNA in arabidopsis thaliana sheds novel insights into gene regulation through RNA-directed DNA methylation
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. RNA-directed DNA methylation (RdDM) is a plant-specific de novo DNA methylation mechanism that requires long noncoding RNA (lncRNA) as scaffold to define target genomic loci. While the role of RdDM in maintaining genome stability is well established, how it regulates protein-coding genes remains poorly understood and few RdDM target genes have been identified. In this study, we obtained sequences of RdDM-associated lncRNAs using nuclear RNA immunoprecipitation against ARGONAUTE 4 (AGO4), a key component of RdDM that binds specifically with the lncRNA. Comparison of these lncRNAs with gene expression data of RdDM mutants identified novel RdDM target genes. Surprisingly, a large proportion of these target genes were repressed in RdDM mutants suggesting that they are normally activated by RdDM. These RdDM-activated genes are more enriched for gene body lncRNA than the RdDM-repressed genes. Histone modification and RNA analyses of several RdDM-activated stress response genes detected increased levels of active histone mark and short RNA transcript in the lncRNA-overlapping gene body regions in the ago4 mutant despite the repressed expression of these genes. These results suggest that RdDM, or AGO4, may play a role in maintaining or activating stress response gene expression by directing gene body chromatin modification preventing cryptic transcription
In Arabidopsis hybrids and Hybrid Mimics, up-regulation of cell wall biogenesis is associated with the increased plant size
© 2019 The Authors. Plant Direct published by American Society of Plant Biologists, Society for Experimental Biology and John Wiley & Sons Ltd. Hybrid breeding is of economic importance in agriculture for increasing yield, yet the basis of heterosis is not well understood. In Arabidopsis, crosses between different accessions produce hybrids with different levels of heterosis relative to parental phenotypes in biomass. In all hybrids, the advantage of the F1 hybrid in both phenotypic uniformity and yield gain is lost in the heterogeneous F2. F5/F6 Hybrid Mimics generated from a cross between C24 and Landsberg erecta (Ler) ecotypes demonstrated that the large plant phenotype of the F1 hybrids can be stabilized. Hybrid Mimic selection was applied to Wassilewskija (Ws)/Ler and Col/Ler hybrids. The two hybrids show different levels of heterosis. The Col/Ler hybrid generated F7 Hybrid Mimics with rosette diameter and fresh weight equivalent to the F1 hybrid at 30 DAS; F7 Ws/Ler Hybrid Mimics outperformed the F1 hybrid in both the rosette size and biomass. Transcriptome analysis revealed up-regulation of cell wall biosynthesis, and cell wall expansion genes could be a common pathway in increased size in the Arabidopsis hybrids and Hybrid Mimics. Intercross of two independent Hybrid Mimic lines can further increase the biomass gain. Our results encourage the use of Hybrid Mimics for breeding and for investigating the molecular basis of heterosis
Leaf growth in early development is key to biomass heterosis in Arabidopsis.
Arabidopsis thaliana hybrids have similar properties to hybrid crops with greater biomass relative to the parents. We asked whether the greater biomass was due to increased photosynthetic efficiency per unit leaf area or to overall increased leaf area and increased total photosynthate per plant. We found that photosynthetic parameters (electron transport rate, CO2 assimilation rate, chlorophyll content, chloroplast number) were unchanged on a leaf unit area and unit fresh weight basis between parents and hybrids indicating that heterosis is not a result of increased photosynthetic efficiency. To investigate the possibility of increased leaf area producing more photosynthate per plant we studied C24/ Landsberg erecta (Ler) hybrids in detail. These hybrids have earlier germination and leaf growth than the parents leading to a larger leaf area at any point in development of the plant. The developing leaves of the hybrids are significantly larger than those of the parents with consequent greater production of photosynthate and an increased contribution to heterosis. The set of leaves contributing to heterosis changes as the plant develops; the four most recently emerged leaves make the greatest contribution. As a leaf matures, its contribution to heterosis attenuates. While photosynthesis per unit leaf area is unchanged at any stage of development in the hybrid, leaf area is greater and the amount of photosynthate per plant is increased
In Arabidopsis thaliana Heterosis Level Varies among Individuals in an F1 Hybrid Population.
Heterosis or hybrid vigour is a phenomenon in which hybrid progeny exhibit superior yield and biomass to parental lines and has been used to breed F1 hybrid cultivars in many crops. A similar level of heterosis in all F1 individuals is expected as they are genetically identical. However, we found variation in rosette size in individual F1 plants from a cross between C24 and Columbia-0 accessions of Arabidopsis thaliana. Big-sized F1 plants had 26.1% larger leaf area in the first and second leaves than medium-sized F1 plants at 14 days after sowing in spite of the identical genetic background. We identified differentially expressed genes between big- and medium-sized F1 plants by microarray; genes involved in the category of stress response were overrepresented. We made transgenic plants overexpressing 21 genes, which were differentially expressed between the two size classes, and some lines had increased plant size at 14 or 21 days after sowing but not at all time points during development. Change of expression levels in stress-responsive genes among individual F1 plants could generate the variation in plant size of individual F1 plants in A. thaliana
Genetic characterization of inbred lines of Chinese cabbage by DNA markers; towards the application of DNA markers to breeding of F<inf>1</inf> hybrid cultivars
© 2015 The Authors. Chinese cabbage (Brassica rapa L. var. pekinensis) is an important vegetable in Asia, and most Japanese commercial cultivars of Chinese cabbage use an F1 hybrid seed production system. Self-incompatibility is successfully used for the production of F1 hybrid seeds in B. rapa vegetables to avoid contamination by non-hybrid seeds, and the strength of self-incompatibility is important for harvesting a highly pure F1 seeds. Prediction of agronomically important traits such as disease resistance based on DNA markers is useful. In this dataset, we identified the S haplotypes by DNA markers and evaluated the strength of self-incompatibility in Chinese cabbage inbred lines. The data described the predicted disease resistance to Fusarium yellows or clubroot in 22 Chinese cabbage inbred lines using gene associated or gene linked DNA markers
Characterization of Histone H3 Lysine 4 and 36 Tri-methylation in Brassica rapa L.
Covalent modifications of histone proteins act as epigenetic regulators of gene expression. We report the distribution of two active histone marks (H3K4me3 and H3K36me3) in 14-day leaves in two lines of Brassica rapa L. by chromatin immunoprecipitation sequencing. Both lines were enriched with H3K4me3 and H3K36me3 marks at the transcription start site, and the transcription level of a gene was associated with the level of H3K4me3 and H3K36me3. H3K4me3- and H3K36me3-marked genes showed low tissue-specific gene expression, and genes with both H3K4me3 and H3K36me3 had a high level of expression and were constitutively expressed. Bivalent active and repressive histone modifications such as H3K4me3 and H3K27me3 marks or antagonistic coexistence of H3K36me3 and H3K27me3 marks were observed in some genes. Expression may be susceptible to changes by abiotic and biotic stresses in genes having both H3K4me3 and H3K27me3 marks. We showed that the presence of H3K36me3 marks was associated with different gene expression levels or tissue specificity between paralogous paired genes, suggesting that H3K36me3 might be involved in subfunctionalization of the subgenomes
Genome-wide analysis of long noncoding RNAs, 24-nt siRNAs, DNA methylation and H3K27me3 marks in Brassica rapa
Long noncoding RNAs (lncRNAs) are RNA fragments that generally do not code for a protein but are involved in epigenetic gene regulation. In this study, lncRNAs of Brassica rapa were classified into long intergenic noncoding RNAs, natural antisense RNAs, and intronic noncoding RNAs and their expression analyzed in relation to genome-wide 24-nt small interfering RNAs (siRNAs), DNA methylation, and histone H3 lysine 27 trimethylation marks (H3K27me3). More than 65% of the lncRNAs analyzed consisted of one exon, and more than 55% overlapped with inverted repeat regions (IRRs). Overlap of lncRNAs with IRRs or genomic regions encoding for 24-nt siRNAs resulted in increased DNA methylation levels when both were present. LncRNA did not overlap greatly with H3K27me3 marks, but the expression level of intronic noncoding RNAs that did coincide with H3K27me3 marks was higher than without H3K27me3 marks. The Brassica genus comprises important vegetables and oil seed crops grown across the world. B. rapa is a diploid (AA genome) thought to be one of the ancestral species of both B. juncea (AABB genome) and B. napus (AACC) through genome merging (allotetrapolyploidization). Complex genome restructuring and epigenetic alterations are thought to be involved in these allotetrapolyploidization events. Comparison of lncRNAs between B. rapa and B. nigra, B. oleracea, B. juncea, and B. napus showed the highest conservation with B. oleracea. This study presents a comprehensive analysis of the epigenome structure of B. rapa at multi-epigenetic levels (siRNAs, DNA methylation, H3K27me3, and lncRNAs) and identified a suite of candidate lncRNAs that may be epigenetically regulated in the Brassica genus
Outcome after modified Putti-Platt procedure for recurrent traumatic anterior shoulder dislocations
Most recent studies on procedures for stabilizing the glenohumeral joint focus on arthroscopic techniques. A relatively simple open procedure is the modified Putti-Platt procedure. The aim of these retrospective case series was to evaluate the functional outcome, patient satisfaction, and quality of life of patients who underwent this procedure. After a median follow-up time of 4.7 (P25-P75 1.7-6.8) years, fifty-one patients could be enrolled with a mean age of 25 (21-39) years. Five patients (10 %) reported re-dislocations. The median Constant score for the affected side was 84 (P25-P75 75-91). Median loss of motion in abduction, elevation, external rotation, and external rotation in 90°
Development of a New DNA Marker for Fusarium Yellows Resistance in Brassica rapa Vegetables
In vegetables of Brassica rapa L., Fusarium oxysporum f. sp. rapae (For) or F. oxysporum f. sp. conglutinans (Foc) cause Fusarium yellows. A resistance gene against Foc (FocBr1) has been identified, and deletion of this gene results in susceptibility (focbr1-1). In contrast, a resistance gene against For has not been identified. Inoculation tests showed that lines resistant to Foc were also resistant to For, and lines susceptible to Foc were susceptible to For. However, prediction of disease resistance by a dominant DNA marker on FocBr1 (Bra012688m) was not associated with disease resistance of For in some komatsuna lines using an inoculation test. QTL-seq using four F2 populations derived from For susceptible and resistant lines showed one causative locus on chromosome A03, which covers FocBr1. Comparison of the amino acid sequence of FocBr1 between susceptible and resistant alleles (FocBr1 and FocBo1) showed that six amino acid differences were specific to susceptible lines. The presence and absence of FocBr1 is consistent with For resistance in F2 populations. These results indicate that FocBr1 is essential for For resistance, and changed amino acid sequences result in susceptibility to For. This susceptible allele is termed focbr1-2, and a new DNA marker (focbr1-2m) for detection of the focbr1-2 allele was develope
- …