60 research outputs found
The Pancreas Secreting Insulin for Decades after Onset of Type I Diabetes — Implications for Care and Management
Up until recently, the prevailing dogma was that insulin secretion ceased within a couple of years after the diagnosis of type I diabetes, a clinical time period called the honeymoon. But a series of recent studies have established that release of C-peptide, which is the best measure of endogenous insulin production, can commonly persist for decades after disease onset. The release of C-peptide, even at low levels, is shown to have functional and clinical significance. For example, C-peptide levels >10 pmol/l are associated with fewer diabetes complications, i.e., nephropathy, neuropathy, foot ulcers, and retinopathy. The diabetic population may also be heterogeneous in risk for fall in C-peptide, with early age of diabetes onset a risk factor for more rapid C-peptide decline. The persistence of insulin release for decades and its functional and clinical significance suggest that assays for C-peptide should be a regular part of diabetes management. Furthermore, patients with established diabetes should be eligible to participate in clinical trials of immune therapies since preservation of these low levels appears clinically important to prevent complications
Recommended from our members
TNF Receptor 2 and Disease: Autoimmunity and Regenerative Medicine
The regulatory cytokine tumor necrosis factor (TNF) exerts its effects through two receptors: TNFR1 and TNFR2. Defects in TNFR2 signaling are evident in a variety of autoimmune diseases. One new treatment strategy for autoimmune disease is selective destruction of autoreactive T cells by administration of TNF, TNF inducers, or TNFR2 agonism. A related strategy is to rely on TNFR2 agonism to induce T-regulatory cells (Tregs) that suppress cytotoxic T cells. Targeting TNFR2 as a treatment strategy is likely superior to TNFR1 because of its more limited cellular distribution on T cells, subsets of neurons, and a few other cell types, whereas TNFR1 is expressed throughout the body. This review focuses on TNFR2 expression, structure, and signaling; TNFR2 signaling in autoimmune disease; treatment strategies targeting TNFR2 in autoimmunity; and the potential for TNFR2 to facilitate end organ regeneration
The benefits of clustering in TNF receptor superfamily signaling
The tumor necrosis factor (TNF) receptor superfamily is a structurally and functionally related group of cell surface receptors that play crucial roles in various cellular processes, including apoptosis, cell survival, and immune regulation. This review paper synthesizes key findings from recent studies, highlighting the importance of clustering in TNF receptor superfamily signaling. We discuss the underlying molecular mechanisms of signaling, the functional consequences of receptor clustering, and potential therapeutic implications of targeting surface structures of receptor complexes
Recommended from our members
Persistence of Prolonged C-peptide Production in Type 1 Diabetes as Measured With an Ultrasensitive C-peptide Assay
Objective: To examine persistence of C-peptide production by ultrasensitive assay years after onset of type 1 diabetes and factors associated with preserving β-cell function. Research Design and Methods: Serum C-peptide levels, a marker of insulin production and surviving β-cells, were measured in human subjects (n = 182) by ultrasensitive assay, as was β-cell functioning. Twenty-two times more sensitive than standard assays, this assay’s lower detection limit is 1.5 pmol/L. Disease duration, age at onset, age, sex, and autoantibody titers were analyzed by regression analysis to determine their relationship to C-peptide production. Another group of four patients was serially studied for up to 20 weeks to examine C-peptide levels and functioning. Results: The ultrasensitive assay detected C-peptide in 10% of individuals 31–40 years after disease onset and with percentages higher at shorter duration. Levels as low as 2.8 ± 1.1 pmol/L responded to hyperglycemia with increased C-peptide production, indicating residual β-cell functioning. Several other analyses showed that β-cells, whose C-peptide production was formerly undetectable, were capable of functioning. Multivariate analysis found disease duration (β = −2.721; P = 0.005) and level of zinc transporter 8 autoantibodies (β = 0.127; P = 0.015) significantly associated with C-peptide production. Unexpectedly, onset at >40 years of age was associated with low C-peptide production, despite short disease duration. Conclusions: The ultrasensitive assay revealed that C-peptide production persists for decades after disease onset and remains functionally responsive. These findings suggest that patients with advanced disease, whose β-cell function was thought to have long ceased, may benefit from interventions to preserve β-cell function or to prevent complications
Early- Versus Late-Onset Type 1 Diabetes: Two Different Pathophysiological Subtypes with Implications for Therapy
Insulin, as measured by C-peptide, is produced for decades after onset of type 1 diabetes, and even very low levels of C-peptide have clinical significance. In this chapter we show that two distinct pathophysiological subtypes of type 1 diabetic subjects can be distinguished. Early-onset diabetic subjects (≤20 years) have rapid loss of C-peptide, whereas late-onset diabetic subjects (>20 years) have slower C-peptide declines over decades. Early-onset diabetics have significantly lower levels of persistent autoreactive CD8+ T cells than do late-onset diabetic subjects. In late-onset disease, robust production of autoreactive T-cells occurs even in the absence of C-peptide. Metabolomics analysis reveals frequent differences between the two subtypes of subjects in the levels of amino acids, carbohydrates, cofactors, lipids, peptides, and xenobiotics. There are statistically significant differences related to protective islet functions, islet health, development, blood sugar control, and regulation of exocrine pancreas function. Taken together these findings suggest that pancreas pathobiology, as well as durability of abnormal T-cell response should be considered in immune targeting treatments. Therapies aimed at immune defects alone are likely to work best in late-onset diabetics. Therapies aimed at islet cell preservation in early-onset diabetic subjects likely have greater efficacy if administered shortly after disease onset
Recommended from our members
Homogeneous Expansion of Human T-Regulatory Cells Via Tumor Necrosis Factor Receptor 2
T-regulatory cells (Tregs) are a rare lymphocyte subtype that shows promise for treating infectious disease, allergy, graft-versus-host disease, autoimmunity, and asthma. Clinical applications of Tregs have not been fully realized because standard methods of expansion ex vivo produce heterogeneous progeny consisting of mixed populations of CD4 + T cells. Heterogeneous progeny are risky for human clinical trials and face significant regulatory hurdles. With the goal of producing homogeneous Tregs, we developed a novel expansion protocol targeting tumor necrosis factor receptors (TNFR) on Tregs. In in vitro studies, a TNFR2 agonist was found superior to standard methods in proliferating human Tregs into a phenotypically homogeneous population consisting of 14 cell surface markers. The TNFR2 agonist-expanded Tregs also were functionally superior in suppressing a key Treg target cell, cytotoxic T-lymphocytes. Targeting the TNFR2 receptor during ex vivo expansion is a new means for producing homogeneous and potent human Tregs for clinical opportunities
Prevention of rejection of murine islet allografts by pretreatment with anti-dendritic cell antibody
Previously we have demonstrated that islets of Langerhans treated with donor-specific anti-Ia serum and complement survive when transplanted across the major histocompatibility complex of the mouse. In this study, using immunofluorescence, we demonstrate two morphologically distinct populations of Ia-positive cells scattered within the Ia-negative islet tissue. A large irregularly shaped Ia-positive subset of cells were identified as dendritic cells by using the 33D1 antibody specific for a mouse dendritic cell antigen. The other small, round Ia-positive subset was 33D1 negative. Islets pretreated with anti-dendritic cell antibody and complement prior to transplantation survived in their histoincompatible recipients for \u3e200 days. Rejection of stable islet allografts promptly occurred when transplant recipients were challenged with 1 x 105 donor dendritic cells 60 days after transplantation. These results demonstrate an important in vivo role for donor dendritic cells in the stimulation of allograft rejection
Prevention of rejection of murine islet allografts by pretreatment with anti-dendritic cell antibody
Faustman, D., Steinman, R.M., Gebel, H., Hauptfeld, V., Davie, J., and Lacy, P. Prevention of rejection of murine islet allografts by pretreatment with anti-dendritic cell antibody. Proc. Natl. Acad. Sci. USA. 81: 3864-3868, 1984https://digitalcommons.rockefeller.edu/historical-scientific-reports/1013/thumbnail.jp
Recommended from our members
Proof-of-Concept, Randomized, Controlled Clinical Trial of Bacillus-Calmette-Guerin for Treatment of Long-Term Type 1 Diabetes
Background: No targeted immunotherapies reverse type 1 diabetes in humans. However, in a rodent model of type 1 diabetes, Bacillus Calmette-Guerin (BCG) reverses disease by restoring insulin secretion. Specifically, it stimulates innate immunity by inducing the host to produce tumor necrosis factor (TNF), which, in turn, kills disease-causing autoimmune cells and restores pancreatic beta-cell function through regeneration. Methodology/Principal Findings Translating these findings to humans, we administered BCG, a generic vaccine, in a proof-of-principle, double-blind, placebo-controlled trial of adults with long-term type 1 diabetes (mean: 15.3 years) at one clinical center in North America. Six subjects were randomly assigned to BCG or placebo and compared to self, healthy paired controls (n = 6) or reference subjects with (n = 57) or without (n = 16) type 1 diabetes, depending upon the outcome measure. We monitored weekly blood samples for 20 weeks for insulin-autoreactive T cells, regulatory T cells (Tregs), glutamic acid decarboxylase (GAD) and other autoantibodies, and C-peptide, a marker of insulin secretion. BCG-treated patients and one placebo-treated patient who, after enrollment, unexpectedly developed acute Epstein-Barr virus infection, a known TNF inducer, exclusively showed increases in dead insulin-autoreactive T cells and induction of Tregs. C-peptide levels (pmol/L) significantly rose transiently in two BCG-treated subjects (means: 3.49 pmol/L [95% CI 2.95–3.8], 2.57 [95% CI 1.65–3.49]) and the EBV-infected subject (3.16 [95% CI 2.54–3.69]) vs.1.65 [95% CI 1.55–3.2] in reference diabetic subjects. BCG-treated subjects each had more than 50% of their C-peptide values above the 95th percentile of the reference subjects. The EBV-infected subject had 18% of C-peptide values above this level. Conclusions/Significance: We conclude that BCG treatment or EBV infection transiently modified the autoimmunity that underlies type 1 diabetes by stimulating the host innate immune response. This suggests that BCG or other stimulators of host innate immunity may have value in the treatment of long-term diabetes. Trial Registration ClinicalTrials.gov NCT0060723
Recommended from our members
The Hippo signaling pathway is required for salivary gland development and its dysregulation is associated with Sjogren's-like disease
Sjogren's syndrome (SS) is a complex autoimmune disease that primarily affects salivary and lacrimal glands and is associated with high morbidity. Although the prevailing dogma is that immune system pathology drives SS, increasing evidence points to structural defects, including defective E-cadherin adhesion, to be involved in its etiology. We have shown that E-cadherin plays pivotal roles in the development of the mouse salivary submandibular gland (SMG) by organizing apical-basal polarity in acinar and ductal progenitors and by signaling survival for differentiating duct cells. Recently, E-cadherin junctions have been shown to interact with effectors of the Hippo signaling pathway, a core pathway regulating organ size, cell proliferation and differentiation. We now show that Hippo signaling is required for SMG branching morphogenesis and is involved in the pathophysiology of SS. During SMG development, a Hippo pathway effector, TAZ, becomes increasingly phosphorylated and associated with E-cadherin and α-catenin, consistent with the activation of Hippo signaling. Inhibition of Lats2, an upstream kinase that promotes TAZ phosphorylation, results in dysmorphogenesis of the SMG and impaired duct formation. SMGs from NOD mice, a mouse model for SS, phenocopy the Lats2-inhibited SMGs and exhibit a reduction in E-cadherin junctional components, including TAZ. Importantly, labial specimens from human SS patients display mislocalization of TAZ from junctional regions to the nucleus, coincident with accumulation of extracellular matrix components, fibronectin and CTGF, known downstream targets of TAZ. Our studies show that Hippo signaling plays a crucial role in SMG branching morphogenesis and provide evidence that defects in this pathway are associated with SS in humans
- …