245 research outputs found

    The Chandra survey of the SMC "Bar": II. Optical counterparts of X-ray sources

    Full text link
    We present the most likely optical counterparts of 113 X-ray sources detected in our Chandra survey of the central region of the Small Magellanic Cloud (SMC) based on the OGLE-II and MCPS catalogs. We estimate that the foreground contamination and chance coincidence probability are minimal for the bright optical counterparts (corresponding to OB type stars; 35 in total). We propose here for the first time 13 High-Mass X-ray Binaries (HMXBs), of which 4 are Be/X-ray binaries (Be-XRBs), and we confirm the previous classification of 18 Be-XRBs. We estimate that the new candidate Be-XRBs have an age of 15-85 Myr, consistent with the age of Be stars. We also examine the "overabundance" of Be-XRBs in the SMC fields covered by Chandra, in comparison with the Galaxy. In luminosities down to about 10^{34} erg/s, we find that SMC Be-XRBs are 1.5 times more common when compared to the Milky Way even after taking into account the difference in the formation rates of OB stars. This residual excess can be attributed to the lower metallicity of the SMC. Finally, we find that the mixing of Be-XRBs with other than their natal stellar population is not an issue in our comparisons of Be-XRBs and stellar populations in the SMC. Instead, we find indication for variation of the SMC XRB populations on kiloparsec scales, related to local variations of the formation rate of OB stars and slight variation of their age, which results in different relative numbers of Be stars and therefore XRBs.Comment: 94 pages, 10 figures, submitted to Ap

    A New Method to Identify Nearby, Young, Low-mass Stars

    Full text link
    We describe a new method to identify young, late-type stars within ~150 pc of the Earth that employs visual or near-infrared data and the GALEX GR4/5 database. For spectral types later than K5, we demonstrate that the ratio of GALEX near-ultraviolet (NUV) to visual and near-IR emission is larger for stars with ages between 10 and 100 Myr than for older, main sequence stars. A search in regions of the sky encompassing the TW Hya and Scorpius-Centaurus Associations has returned 54 high-quality candidates for followup. Spectroscopic observations of 24 of these M1-M5 objects reveal Li 6708 angstrom absorption in at least 17 systems. Because GALEX surveys have covered a significant fraction of the sky, this methodology should prove valuable for future young star studies.Comment: 27 pages, 8 figures, accepted for publication in ApJ. Some significant changes were made in proof, we recommend readers use the ApJ versio

    Observational 520μ5-20\mum Interstellar Extinction Curves Toward Star-Forming Regions Derived from Spitzer IRS Spectra

    Full text link
    Using \emph{Spitzer} Infrared Spectrograph observations of G0--M4 III stars behind dark clouds, I construct 520μ5-20\mum empirical extinction curves for 0.3AK<70.3\leq A_K<7, which is equivalent to AVA_V between \approx 3 and 50. For AK<1A_K<1 the curve appears similar to the \citet{mathis90} diffuse interstellar medium extinction curve, but with a greater degree of extinction. For AK>1A_K>1, the curve exhibits lower contrast between the silicate and absorption continuum, developes ice absorption, and lies closer to the \citet{wd01} RV=5.5R_V=5.5 case B curve, a result which is consistent with that of \citet{flaherty07} and \citet{chiar07}. Recently work using \emph{Spitzer} Infrared Array Camera data by \citet{chapman08} independently reaches a similar conclusion, that the shape of the extinction curve changes as a function of increasing AKA_K. By calculating the optical depths of the 9.7μ9.7\mum silicate and 6.0, 6.8, and 15.2 μ\mum ice features, I determine that a process involving ice is responsible for the changing shape of the extinction curve and speculate that this process is coagulation of ice-mantled grains rather than ice-mantled grains alone.Comment: Submitted to ApJ Letters, 5 pages, 4 figures, 1 table. Revised version published in ApJ Letters, with 5 pages, 3 figures, and 2 tables. Empirical extinction curves are available as online-only from Ap

    Strengthening the Case for Asteroidal Accrection: Evidence for Subtle and Diverse Disks at White Dwarfs

    Full text link
    Spitzer Space Telescope IRAC 3-8 micron and AKARI IRC 2-4 micron photometry are reported for ten white dwarfs with photospheric heavy elements; nine relatively cool stars with photospheric calcium, and one hotter star with a peculiar high carbon abundance. A substantial infrared excess is detected at HE 2221-1630, while modest excess emissions are identified at HE 0106-3253 and HE 0307+0746, implying these latter two stars have relatively narrow (Delta r < 0.1 Rsol) rings of circumstellar dust. A likely 7.9 micron excess is found at PG 1225-079 and may represent, together with G166-58, a sub-class of dust ring with a large inner hole. The existence of attenuated disks at white dwarfs substantiates the connection between their photospheric heavy elements and the accretion of disrupted minor planets, indicating many polluted white dwarfs may harbor orbiting dust, even those lacking an obvious infrared excess.Comment: 13 pages, emulateapj, accepted to Ap

    Detection of Strong Millimeter Emission from the Circumstellar Dust Disk Around V1094 Sco: Cold and Massive Disk around a T Tauri Star in a Quiescent Accretion Phase?

    Get PDF
    We present the discovery of a cold massive dust disk around the T Tauri star V1094 Sco in the Lupus molecular cloud from the 1.1 millimeter continuum observations with AzTEC on ASTE. A compact (rr\lesssim320 AU) continuum emission coincides with the stellar position having a flux density of 272 mJy which is largest among T Tauri stars in Lupus. We also present the detection of molecular gas associated with the star in the five-point observations in 12^{12}CO J=3--2 and 13^{13}CO J=3--2. Since our 12^{12}CO and 13^{13}CO observations did not show any signature of a large-scale outflow or a massive envelope, the compact dust emission is likely to come from a disk around the star. The observed SED of V1094 Sco shows no distinct turnover from near infrared to millimeter wavelengths, which can be well described by a flattened disk for the dust component, and no clear dip feature around 10 \micron suggestive of absence of an inner hole in the disk. We fit a simple power-law disk model to the observed SED. The estimated disk mass ranges from 0.03 to \gtrsim0.12 M_\sun, which is one or two orders of magnitude larger than the median disk mass of T Tauri stars in Taurus.Comment: 18 pages, 4 figures, accepted for publication in Ap

    Proper motions of field L and T dwarfs -II

    Full text link
    By using images taken with WFCAM on UKIRT and SofI on the NTT and combining them with 2MASS we have measured proper motions for 126 L and T dwarfs in the dwarf archive. Two of these L dwarfs appear to have M dwarf common proper motion companions, and 2 also appear to be high velocity dwarfs, indicating possible membership of the thick disc. We have also compared the motion of these 126 objects to that of numerous moving groups, and have identified new members of the Hyades, Ursa Major and Pleiades moving groups. These new objects, as well as those identified in Jameson et al. (2008) have allowed us to refine the L dwarf sequence for Ursa Major that was defined by Jameson et al. (2008).Comment: Accepted for publication in MNRAS. 10 pages, 3 figure

    A commonly occurring genetic variant within the NPLOC4-TSPAN10-PDE6G gene cluster is associated with the risk of strabismus.

    Get PDF
    Strabismus refers to an abnormal alignment of the eyes leading to the loss of central binocular vision. Concomitant strabismus occurs when the angle of deviation is constant in all positions of gaze and often manifests in early childhood when it is considered to be a neurodevelopmental disorder of the visual system. As such, it is inherited as a complex genetic trait, affecting 2-4% of the population. A genome-wide association study (GWAS) for self-reported strabismus (1345 cases and 65,349 controls from UK Biobank) revealed a single genome-wide significant locus on chromosome 17q25. Approximately 20 variants across the NPLOC4-TSPAN10-PDE6G gene cluster and in almost perfect linkage disequilibrium (LD) were most strongly associated (lead variant: rs75078292, OR = 1.26, p = 2.24E-08). A recessive model provided a better fit to the data than an additive model. Association with strabismus was independent of refractive error, and the degree of association with strabismus was minimally attenuated after adjustment for amblyopia. The association with strabismus was replicated in an independent cohort of clinician-diagnosed children aged 7 years old (116 cases and 5084 controls; OR = 1.85, p = 0.009). The associated variants included 2 strong candidate causal variants predicted to have functional effects: rs6420484, which substitutes tyrosine for a conserved cysteine (C177Y) in the TSPAN10 gene, and a 4-bp deletion variant, rs397693108, predicted to cause a frameshift in TSPAN10. The population-attributable risk for the locus was approximately 8.4%, indicating an important role in conferring susceptibility to strabismus

    Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks

    Get PDF
    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of ~10^4 young (~10 Myr old) post-accretion pre-MS stars monitored for ~10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low mass companion stars. We present photometric and spectroscopic data for a pre-MS K5 star (1SWASP J140747.93-394542.6), a newly discovered ~0.9 Msun member of the ~16 Myr-old Upper Cen-Lup subgroup of Sco-Cen at a kinematic distance of 128 pc. SuperWASP and ASAS light curves for this star show a remarkably long, deep, and complex eclipse event centered on 29 April 2007. At least 5 multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of ~1 mag eclipses symmetrically occurring +-12 days and +-26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a ~54 day period in 2007, and a strong >1 mag dimming event occurred over a ~12 day span. We place a firm lower limit on the period of 850 days (i.e. the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km/s). The shape of the light curve is similar to the lop-sided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, girded by at least 3 dusty rings of lower optical depth. Between these rings are at least two annuli of near-zero optical depth (i.e. gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the estimated total ring mass is ~8-0.4 Mmoon (if the rings have optical opacity similar to Saturn's rings), and the edge of the outermost detected ring has orbital radius ~0.4-0.09 AU.Comment: Astronomical Journal, in press, 13 figure

    The On-Site Analysis of the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) observatory will be one of the largest ground-based very high-energy gamma-ray observatories. The On-Site Analysis will be the first CTA scientific analysis of data acquired from the array of telescopes, in both northern and southern sites. The On-Site Analysis will have two pipelines: the Level-A pipeline (also known as Real-Time Analysis, RTA) and the level-B one. The RTA performs data quality monitoring and must be able to issue automated alerts on variable and transient astrophysical sources within 30 seconds from the last acquired Cherenkov event that contributes to the alert, with a sensitivity not worse than the one achieved by the final pipeline by more than a factor of 3. The Level-B Analysis has a better sensitivity (not be worse than the final one by a factor of 2) and the results should be available within 10 hours from the acquisition of the data: for this reason this analysis could be performed at the end of an observation or next morning. The latency (in particular for the RTA) and the sensitivity requirements are challenging because of the large data rate, a few GByte/s. The remote connection to the CTA candidate site with a rather limited network bandwidth makes the issue of the exported data size extremely critical and prevents any kind of processing in real-time of the data outside the site of the telescopes. For these reasons the analysis will be performed on-site with infrastructures co-located with the telescopes, with limited electrical power availability and with a reduced possibility of human intervention. This means, for example, that the on-site hardware infrastructure should have low-power consumption. A substantial effort towards the optimization of high-throughput computing service is envisioned to provide hardware and software solutions with high-throughput, low-power consumption at a low-cost.Comment: In Proceedings of the 34th International Cosmic Ray Conference (ICRC2015), The Hague, The Netherlands. All CTA contributions at arXiv:1508.0589
    corecore