328 research outputs found
Dynamics of Freely Cooling Granular Gases
We study dynamics of freely cooling granular gases in two-dimensions using
large-scale molecular dynamics simulations. We find that for dilute systems the
typical kinetic energy decays algebraically with time, E(t) ~ t^{-1}, in the
long time limit. Asymptotically, velocity statistics are characterized by a
universal Gaussian distribution, in contrast with the exponential high-energy
tails characterizing the early homogeneous regime. We show that in the late
clustering regime particles move coherently as typical local velocity
fluctuations, Delta v, are small compared with the typical velocity, Delta v/v
~ t^{-1/4}. Furthermore, locally averaged shear modes dominate over acoustic
modes. The small thermal velocity fluctuations suggest that the system can be
heuristically described by Burgers-like equations.Comment: 4 pages, 5 figure
Deviations from plastic barriers in BiSrCaCuO thin films
Resistive transitions of an epitaxial BiSrCaCuO thin
film were measured in various magnetic fields (), ranging from 0
to 22.0 T. Rounded curvatures of low resistivity tails are observed in
Arrhenius plot and considered to relate to deviations from plastic barriers. In
order to characterize these deviations, an empirical barrier form is developed,
which is found to be in good agreement with experimental data and coincide with
the plastic barrier form in a limited magnetic field range. Using the plastic
barrier predictions and the empirical barrier form, we successfully explain the
observed deviations.Comment: 5 pages, 6 figures; PRB 71, 052502 (2005
Spatial Correlations in Compressible Granular Flows
For a freely evolving granular fluid, the buildup of spatial correlations in
density and flow field is described using fluctuating hydrodynamics. The theory
for incompressible flows is extended to the general, compressible case,
including longitudinal velocity and density fluctuations, and yields
qualitatively different results for long range correlations. The structure
factor of density fluctuations shows a maximum at finite wavenumber, shifting
in time to smaller wavenumbers and corresponding to a growing correlation
length. It agrees well with two-dimensional molecular dynamics simulations.Comment: 12 pages, Latex, 3 figure
Fast diffusion of a Lennard-Jones cluster on a crystalline surface
We present a Molecular Dynamics study of large Lennard-Jones clusters
evolving on a crystalline surface. The static and the dynamic properties of the
cluster are described. We find that large clusters can diffuse rapidly, as
experimentally observed. The role of the mismatch between the lattice
parameters of the cluster and the substrate is emphasized to explain the
diffusion of the cluster. This diffusion can be described as a Brownian motion
induced by the vibrationnal coupling to the substrate, a mechanism that has not
been previously considered for cluster diffusion.Comment: latex, 5 pages with figure
Self-diffusion in granular gases
The coefficient of self-diffusion for a homogeneously cooling granular gas
changes significantly if the impact-velocity dependence of the restitution
coefficient is taken into account. For the case of a constant
the particles spread logarithmically slow with time, whereas the
velocity dependent coefficient yields a power law time-dependence. The impact
of the difference in these time dependences on the properties of a freely
cooling granular gas is discussed.Comment: 6 pages, no figure
A dc voltage step-up transformer based on a bi-layer \nu=1 quantum Hall system
A bilayer electron system in a strong magnetic field at low temperatures,
with total Landau level filling factor nu =1, can enter a strongly coupled
phase, known as the (111) phase or the quantum Hall pseudospin-ferromagnet. In
this phase there is a large quantized Hall drag resistivity between the layers.
We consider here structures where regions of (111) phase are separated by
regions in which one of the layers is depleted by means of a gate, and various
of the regions are connected together by wired contacts. We note that with
suitable designs, one can create a DC step-up transformer where the output
voltage is larger than the input, and we show how to analyze the current flows
and voltages in such devices
Phase Changes in an Inelastic Hard Disk System with a Heat Bath under Weak Gravity for Granular Fluidization
We performed numerical simulations on a two-dimensional inelastic hard disk
system under gravity with a heat bath to study the dynamics of granular
fluidization. Upon increasing the temperature of the heat bath, we found that
three phases, namely, the condensed phase, locally fluidized phase, and
granular turbulent phase, can be distinguished using the maximum packing
fraction and the excitation ratio, or the ratio of the kinetic energy to the
potential energy.It is shown that the system behavior in each phase is very
different from that of an ordinary vibrating bed.Comment: 4 pages, including 5 figure
Shock-Like Dynamics of Inelastic Gases
We provide a simple physical picture which suggests that the asymptotic
dynamics of inelastic gases in one dimension is independent of the degree of
inelasticity. Statistical characteristics, including velocity fluctuations and
the velocity distribution are identical to those of a perfectly inelastic
sticky gas, which in turn is described by the inviscid Burgers equation.
Asymptotic predictions of this continuum theory, including the t^{-2/3}
temperature decay and the development of discontinuities in the velocity
profile, are verified numerically for inelastic gases.Comment: 4 pages, 5 figures, revte
Steady state properties of a driven granular medium
We study a two-dimensional granular system where external driving force is
applied to each particle in the system in such a way that the system is driven
into a steady state by balancing the energy input and the dissipation due to
inelastic collision between particles. The velocities of the particles in the
steady state satisfy the Maxwellian distribution. We measure the
density-density correlation and the velocity-velocity correlation functions in
the steady state and find that they are of power-law scaling forms. The
locations of collision events are observed to be time-correlated and such a
correlation is described by another power-law form. We also find that the
dissipated energy obeys a power-law distribution. These results indicate that
the system evolves into a critical state where there are neither characteristic
spatial nor temporal scales in the correlation functions. A test particle
exhibits an anomalous diffusion which is apparently similar to the Richardson
law in a three-dimensional turbulent flow.Comment: REVTEX, submitted to Phys. Rev.
- …