16 research outputs found

    Anti-inflammatory activity of edible oyster mushroom is mediated through the inhibition of NF-ÎșB and AP-1 signaling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mushrooms are well recognized for their culinary properties as well as for their potency to enhance immune response. In the present study, we evaluated anti-inflammatory properties of an edible oyster mushroom (<it>Pleurotus ostreatus</it>) <it>in vitro </it>and <it>in vivo</it>.</p> <p>Methods</p> <p>RAW264.7 murine macrophage cell line and murine splenocytes were incubated with the oyster mushroom concentrate (OMC, 0-100 ÎŒg/ml) in the absence or presence of lipopolysacharide (LPS) or concanavalin A (ConA), respectively. Cell proliferation was determined by MTT assay. Expression of cytokines and proteins was measured by ELISA assay and Western blot analysis, respectively. DNA-binding activity was assayed by the gel-shift analysis. Inflammation in mice was induced by intraperitoneal injection of LPS.</p> <p>Results</p> <p>OMC suppressed LPS-induced secretion of tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6), and IL-12p40 from RAW264.7 macrophages. OMC inhibited LPS-induced production of prostaglandin E2 (PGE<sub>2</sub>) and nitric oxide (NO) through the down-regulation of expression of COX-2 and iNOS, respectively. OMC also inhibited LPS-dependent DNA-binding activity of AP-1 and NF-ÎșB in RAW264.7 cells. Oral administration of OMC markedly suppressed secretion of TNF-α and IL-6 in mice challenged with LPS <it>in vivo</it>. Anti-inflammatory activity of OMC was confirmed by the inhibition of proliferation and secretion of interferon-Îł (IFN-Îł), IL-2, and IL-6 from concanavalin A (ConA)-stimulated mouse splenocytes.</p> <p>Conclusions</p> <p>Our study suggests that oyster mushroom possesses anti-inflammatory activities and could be considered a dietary agent against inflammation. The health benefits of the oyster mushroom warrant further clinical studies.</p

    Letinula edodes (Berk.) Pegler (Shiitake) modulates genotoxic and mutagenic effects induced by alkylating agents in vivo

    No full text
    We evaluated the antimutagenic effect of Letinula edodes (Berk.) Pegler (Shiitake) on the frequency of micronuclei in mice treated with N-ethyl-N-nitrosourea (ENU) or cyclophosphamide (Cl?). Mice were orally (gavage) pretreated for 15 consecutive days with solutions of Shiitake (0.6 ml per day, gavage) prepared at three different temperatures: 4, 21 (RT), and 60 degreesC. Then, the animals were intraperitoneally injected on day 15 with CP (25 or 50 mg/kg) or ENU (50 mg/kg) and killed 24 or 48 h after treatment for evaluation of micronucleated polychromatic erythrocytes (MNPCEs) in bone marrow and micronucleated reticulocytes (MNRETs). A mixture of L. edodes lineages (LE 95/016, 96/14, 96/17, 96/22, 96/23, 97/27, and 97/28) significantly decreased the frequencies of MNPCEs and MNRETs induced by CP (25 and 50 mg/kg). When a single lineage from the mixture (LE 96/17) was tested we also found a significant reduction in the frequencies of MNPCEs and MNRETs induced by both CP or ENU (50 mg/kg). The comet assay was also performed 3 h after ENU treatment using mice pretreated with the single lineage (LE 96/17) of L. edodes. The results showed a high degree of variability with some indications of an antigenotoxic effect. Taken together, our data show that solutions from Shiitake inhibit in vivo mutagenicity of CP and ENU. (C) 2001 Elsevier B.V. B.V. All rights reserved

    Antimutagenic effect of Lentinula edodes (BERK.) Pegler mushroom and possible variation among lineages

    No full text
    This study was performed to evaluate the efficiency of four different lineages (95/01, L1, 96/22 and JABK) of Lentinula edodes (BERK.) Pegler mushroom (shiitake) for inhibiting the N-ethyl-N-nitrosourea (ENU) clastogenicity in vivo. Male Swiss mice (10 animals/group) were treated during 15 consecutive days with dried mushroom added to basal diet under three different concentrations (1, 5 and 10%). At day 15, mice were intraperitoneally injected with ENU (50 mg/kg body weight) and sacrificed 24 h later for evaluation of micronucleated bone marrow polychromatic erythrocytes (MNPCE). Negative and positive controls (10 animals each), receiving basal diet and saline or ENU ip injection, respectively, were also evaluated. Results showed that pretreatments with diets containing the lineages 95/01, L1 and 96/22 reduce the frequencies of MNPCE induced by ENU. The absence of an antimutagenic activity for the lineage JABK might be related to intrinsic differences among the lineages such as biochemical composition. Taken together, our data show that the differences in protective activities of the mushrooms need to be clarified in further studies and the mechanisms for such activities need to be investigated. (C) 2003 Elsevier B.V. Ltd. All rights reserved

    Antimutagenic effect of Agaricus blazei Murrill mushroom on the genotoxicity induced by cyclophosphamide

    No full text
    Agaricus blazei Murrill extracts have previously been shown to have anticarcinogenic and antimutagenic proper-ties. These results suggest that antimutagenic activity, besides the modulation of the immune system, might be involved in the anticarcinogenic action of A. blazei. To investigate the possible antimutagenic effect of A. blazei in vivo, we evaluated its effect on clastogenicity induced by cyclophosphamide (CP) in mice, using the micronucleus test in bone marrow (MNPCE) and in peripheral blood (MNRET). Male Swiss mice were treated with CP (25 or 50 mg/kg i.p.) or with CP plus mushroom solution at three different temperatures: 4, 21, and 60 degreesC. Aqueous solution of a mixture from various lineages of the mushroom inhibited induction of micronuclei by CP in bone marrow and in peripheral blood of mice. In contrast to the mixture of lineages, a single isolated lineage did not lead to a reduction of CP-induced MN frequencies in either bone marrow or blood cells of mice. The results suggest that under certain circumstances these mushrooms exhibit antimutagenic activities that might contribute to an anticarcinogenic effect. (C) 2001 Elsevier B.V. B.V. All rights reserved

    Antithetical effects of hemicellulase-treated Agaricus blazei on the maturation of murine bone-marrow-derived dendritic cells

    No full text
    We report the effects of hemicellulase-treated Agaricus blazei (ABH) on the maturation of bone-marrow-derived dendritic cells (BMDCs). ABH activated immature BMDCs, inducing up-regulation of surface molecules, such as CD40, CD80 and major histocompatibility complex class I antigens, as well as inducing allogeneic T-cell proliferation and T helper type 1 cell development. However, unlike lipopolysaccharide (LPS), ABH did not stimulate the BMDCs to produce proinflammatory cytokines, such as interleukin-12 (IL-12) p40, tumour necrosis factor-α, or IL-1ÎČ. In addition, ABH suppressed LPS-induced DC responses. Pretreatment of DCs with ABH markedly reduced the levels of LPS-induced cytokine secretion, while only slightly decreasing up-regulation of the surface molecules involved in maturation. ABH also had a significant impact on peptidoglycan-induced or CpG oligodeoxynucleotide-induced IL-12p40 production in DCs. The inhibition of LPS-induced responses was not associated with a cytotoxic effect of ABH nor with an anti-inflammatory effect of IL-10. However, ABH decreased NF-ÎșB-induced reporter gene expression in LPS-stimulated J774.1 cells. Interestingly, DCs preincubated with ABH and then stimulated with LPS augmented T helper type 1 responses in culture with allogeneic T cells as compared to LPS-stimulated but non-ABH-pretreated DCs. These observations suggest that ABH regulates DC-mediated responses
    corecore