6 research outputs found

    Vocal Accuracy and Neural Plasticity Following Micromelody-Discrimination Training

    Get PDF
    Recent behavioral studies report correlational evidence to suggest that non-musicians with good pitch discrimination sing more accurately than those with poorer auditory skills. However, other studies have reported a dissociation between perceptual and vocal production skills. In order to elucidate the relationship between auditory discrimination skills and vocal accuracy, we administered an auditory-discrimination training paradigm to a group of non-musicians to determine whether training-enhanced auditory discrimination would specifically result in improved vocal accuracy.We utilized micromelodies (i.e., melodies with seven different interval scales, each smaller than a semitone) as the main stimuli for auditory discrimination training and testing, and we used single-note and melodic singing tasks to assess vocal accuracy in two groups of non-musicians (experimental and control). To determine if any training-induced improvements in vocal accuracy would be accompanied by related modulations in cortical activity during singing, the experimental group of non-musicians also performed the singing tasks while undergoing functional magnetic resonance imaging (fMRI). Following training, the experimental group exhibited significant enhancements in micromelody discrimination compared to controls. However, we did not observe a correlated improvement in vocal accuracy during single-note or melodic singing, nor did we detect any training-induced changes in activity within brain regions associated with singing.Given the observations from our auditory training regimen, we therefore conclude that perceptual discrimination training alone is not sufficient to improve vocal accuracy in non-musicians, supporting the suggested dissociation between auditory perception and vocal production

    Auditory perceptual learning in hypothetically psychosis-prone subjects

    No full text
    International audienceIndividuals with non-clinical anhedonia use unusual strategies to achieve normal performances, as shown by the atypical physiological pattern observed since the earlier stages of information processing. In this study, we explored the relationships between emotional and perceptual processes. Few studies have explored perception mechanisms in anhedonic individuals, particularly for auditory stimuli. We used psychoacoustic procedures to estimate auditory sensitivity in anhedonics, and dynamic-induced evolution in this sensitivity during a perceptual training paradigm. Frequency discrimination thresholds (FDTs) and absolute detection thresholds (ADTs) for pure 1-kHz tones lasting 40, 100, and 200 ms were measured for the left and right ears before and after six 2-h frequency discrimination training sessions involving exclusively 200-ms tones in the right ear. Overall, the training involved 4500 repeated measures of FDTs. No difference was found between anhedonics and control participants for the dynamic frequency discrimination thresholds improvement induced by training. Frequency and level stimulation sensibility was not different between the two groups, despite an unusual instability across measurements in the pre-training session for anhedonic subjects. The results are discussed in terms of dynamic information processing strategies modifications in the anhedonic personality trait

    Multi-target measurable residual disease assessed by error-corrected sequencing in patients with acute myeloid leukemia: An ALFA study

    No full text
    Abstract The evaluation of measurable residual disease (MRD) in acute myeloid leukemia (AML) using comprehensive mutation analysis by next-generation sequencing (NGS) has been investigated in several studies. However controversial results exist regarding the detection of persisting mutations in DNMT3A, TET2, and ASXL1 (DTA). Benchmarking of NGS-MRD taking into account other molecular MRD strategies has to be done. Here, we performed error-corrected-NGS-MRD in 189 patients homogeneously treated in the ALFA-0702 study (NCT00932412). Persistence of non-DTA mutations (HR = 2.23 for RFS and 2.26 for OS), and DTA mutations (HR = 2.16 for OS) were associated with poorer prognosis in multivariate analysis. Persistence of at least two mutations in complete remission (CR) was associated with a higher cumulative incidence of relapse (CIR) (HR = 3.71, p < 0.0001), lower RFS (HR = 3.36, p < 0.0001) and OS (HR = 3.81, p = 0.00023) whereas persistence of only one mutation was not. In 100 analyzable patients, WT1-MRD, but not NGS-MRD, was an independent factor for RFS and OS. In the subset of 67 NPM1 mutated patients, both NPM1 mutation detection (p = 0.0059) and NGS-MRD (p = 0.035) status were associated with CIR. We conclude that detectable NGS-MRD including DTA mutations correlates with unfavorable prognosis in AML. Its integration with alternative MRD strategies in AML management warrants further investigations

    Generalization of Frequency Discrimination Learning Across Frequencies and Ears: Implications for Underlying Neural Mechanisms in Humans

    No full text
    Frequency discrimination thresholds (FDTs) at 750, 1500, 3000, and 6000 Hz were measured in 32 normal-hearing listeners before and after each listener practiced the task for 12 h at one of the above frequencies using a single ear. Marked improvements in thresholds taking place over several hours were observed during the frequency- and ear-specific training period. Comparisons between pre- and posttraining thresholds showed large improvements at the trained frequency, but also at other frequencies. The improvements were initially slightly—but significantly—larger at the trained frequency than at untrained frequencies. However, this trained-frequency advantage disappeared rapidly during the course of the two-hour multifrequency posttraining session, suggesting rapid relearning or learning generalization across frequencies. In contrast, no significant ear specificity was found, not even at early stages of the posttraining session. These findings add to earlier results suggesting that, in humans, frequency discrimination learning is only weakly frequency-specific, and they reveal that a complete generalization across frequencies can occur rapidly with little retraining at the initially untrained frequencies. Implications regarding underlying mechanisms are discussed
    corecore