567 research outputs found

    Diffraction-free light droplets for axially-resolved volume imaging

    Get PDF
    An ideal direct imaging system entails a method to illuminate on command a single diffraction-limited region in a generally thick and turbid volume. The best approximation to this is the use of large-aperture lenses that focus light into a spot. This strategy fails for regions that are embedded deep into the sample, where diffraction and scattering prevail. Airy beams and Bessel beams are solutions of the Helmholtz Equation that are both non-diffracting and self-healing, features that make them naturally able to outdo the effects of distance into the volume but intrinsically do not allow resolution along the propagation axis. Here, we demonstrate diffraction-free self-healing three-dimensional monochromatic light spots able to penetrate deep into the volume of a sample, resist against deflection in turbid environments, and offer axial resolution comparable to that of Gaussian beams. The fields, formed from coherent mixtures of Bessel beams, manifest a more than ten-fold increase in their undistorted penetration, even in turbid milk solutions, compared to diffraction-limited beams. In a fluorescence imaging scheme, we find a ten-fold increase in image contrast compared to diffraction-limited illuminations, and a constant axial resolution even after four Rayleigh lengths. Results pave the way to new opportunities in three-dimensional microscopy

    Breaking the Contrast Limit in Single-Pass Fabry-Pérot Spectrometers

    Get PDF
    The development of high-resolution Fabry-Pérot interferometers has enabled a wide range of scientific and technological advances—ranging from the characterization of material properties to the more fundamental studies of quasi particles in condensed matter. Spectral contrast is key to measuring weak signals and can reach a 103 peak-to-background ratio in a single-pass assembly.At its heart, this limit is a consequence of an unbalanced field amplitude across multiple interfering paths, with an ensuing reduced fringe visibility. Using a high-resolution, high-throughput virtually imaged phased array spectrometer, we demonstrate an intensity-equalization method to achieve an unprecedented 1000-fold increase in spectral contrast in a single-stage, single-pass configuration. To validate the system, we obtain the Brillouin spectrum of water at high scattering concentrations where, unlike with the standard scheme, the inelastic peaks are highly resolved. Our method brings the interferometer close to its ultimate limits and allows rapid high-resolution spectral analysis in a wide range of fields, including Brillouin spectroscopy, mechanical imaging, and molecular fingerprinting

    Anti-diffracting beams through the diffusive optical nonlinearity

    Get PDF
    Anti-diffraction is a theoretically predicted nonlinear optical phenomenon that occurs when a light beam spontaneously focalizes independently of its intensity. We observe anti-diffracting beams supported by the peak-intensity-independent diffusive nonlinearity that are able to shrink below their diffraction-limited size in photorefractive lithium-enriched potassium-tantalate-niobate (KTN:Li)

    Aging solitons in photorefractive dipolar glasses

    Get PDF
    We study experimentally the aging of optical spatial solitons in a dipolar glass hosted by a nanodisordered sample of photorefractive potassium-sodium-tantalate-niobate (KNTN). As the system ages, the waves erratically explore varying strengths of the nonlinear response, causing them to break up and scatter. We show that this process can still lead to solitons, but in a generalized form for which the changing response is compensated by changing the normalized wave size and intensity so as to maintain fixed the optical waveform

    Observation of an intrinsic nonlinearity in the electro-optic response of freezing relaxors ferroelectrics

    Get PDF
    We demonstrate an electro-optic response that is linear in the amplitude but independent of the sign of the applied electric field. The symmetry-preserving linear electro-optic effect emerges at low applied electric fields in freezing nanodisordered KNTN above the dielectric peak temperature, deep into the nominal paraelectric phase. Strong temperature dependence allows us to attribute the phenomenon to an anomalously reduced thermal agitation in the reorientational response of the underlying polar-nanoregions

    Super-crystals in composite ferroelectrics

    Get PDF
    As atoms and molecules condense to form solids, a crystalline state can emerge with its highly ordered geometry and subnanometric lattice constant. In some physical systems, such as ferroelectric perovskites, a perfect crystalline structure forms even when the condensing substances are non-stoichiometric. The resulting solids have compositional disorder and complex macroscopic properties, such as giant susceptibilities and non-ergodicity. Here, we observe the spontaneous formation of a cubic structure in composite ferroelectric potassium– lithium–tantalate–niobate with micrometric lattice constant, 104 times larger than that of the underlying perovskite lattice. The 3D effect is observed in specifically designed samples in which the substitutional mixture varies periodically along one specific crystal axis. Laser propagation indicates a coherent polarization super-crystal that produces an optical X-ray diffractometry, an ordered mesoscopic state of matter with important implications for critical phenomena and applications in miniaturized 3D optical technologies
    corecore