384 research outputs found
High-Frequency Microstrip Cross Resonators for Circular Polarization EPR Spectroscopy
In this article we discuss the design and implementation of a novel
microstrip resonator which allows for the absolute control of the microwaves
polarization degree for frequencies up to 30 GHz. The sensor is composed of two
half-wavelength microstrip line resonators, designed to match the 50 Ohms
impedance of the lines on a high dielectric constant GaAs substrate. The line
resonators cross each other perpendicularly through their centers, forming a
cross. Microstrip feed lines are coupled through small gaps to three arms of
the cross to connect the resonator to the excitation ports. The control of the
relative magnitude and phase between the two microwave stimuli at the input
ports of each line allows for tuning the degree and type of polarization of the
microwave excitation at the center of the cross resonator. The third (output)
port is used to measure the transmitted signal, which is crucial to work at low
temperatures, where reflections along lengthy coaxial lines mask the signal
reflected by the resonator. EPR spectra recorded at low temperature in an S=
5/2 molecular magnet system show that 82%-fidelity circular polarization of the
microwaves is achieved over the central area of the resonator.Comment: Published in Review of Scientific Instrument
Micropayments platform
Projecte final de carrera realitzat en col.laboració amb EPFL-LBD Database LaboratoryCurrent web payment systems are not suitable for transferring very small amounts of
money, such as 0.001 Euros. Because of that it is currently not possible to ask users to pay little prices for small services, such as searching once in an online catalog. In addition, current payment procedures require a large number of steps to be performed. This project consists in designing and developing a platform targeted to micropayments, with the corresponding website and web API, and create a user-friendly, fast and reliable payment procedure,
easy to implement for merchant
Tunneling Splittings in Mn12-Acetate Single Crystals
A Landau-Zener multi-crossing method has been used to investigate the tunnel
splittings in high quality Mn-acetate single crystals in the pure
quantum relaxation regime and for fields applied parallel to the magnetic easy
axis. With this method several individual tunneling resonances have been
studied over a broad range of time scales. The relaxation is found to be
non-exponential and a distribution of tunnel splittings is inferred from the
data. The distributions suggest that the inhomogeneity in the tunneling rates
is due to disorder that produces a non-zero mean value of the average
transverse anisotropy, such as in a solvent disorder model. Further, the effect
of intermolecular dipolar interaction on the magnetic relaxation has been
studied.Comment: Europhysics Letters (in press). 7 pages, including 3 figure
Fabrication of Nano-Gapped Single-Electron Transistors for Transport Studies of Individual Single-Molecule Magnets
Three terminal single-electron transistor devices utilizing Al/Al2O3 gate
electrodes were developed for the study of electron transport through
individual single-molecule magnets. The devices were patterned via multiple
layers of optical and electron beam lithography. Electromigration induced
breaking of the nanowires reliably produces 1-3 nm gaps between which the SMM
can be situated. Conductance through a single Mn12(3-thiophenecarboxylate)
displays the coulomb blockade effect with several excitations within +/- 40
meV.Comment: 10 pages, 5 figure
Low temperature microwave emission from molecular clusters
We investigate the experimental detection of the electromagnetic radiation
generated in the fast magnetization reversal in Mn12-acetate at low
temperatures. In our experiments we used large single crystals and assemblies
of several small single crystals of Mn12-acetate placed inside a cylindrical
stainless steel waveguide in which an InSb hot electron device was also placed
to detect the radiation. All this was set inside a SQUID magnetometer that
allowed to change the magnetic field and measure the magnetic moment and the
temperature of the sample as the InSb detected simultaneously the radiation
emitted from the molecular magnets. Our data show a sequential process in which
the fast inversion of the magnetic moment first occurs, then the radiation is
detected by the InSb device, and finally the temperature of the sample
increases during 15 ms to subsequently recover its original value in several
hundreds of milliseconds.Comment: changed conten
- …