585 research outputs found
Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods
Understanding of degradation mechanisms in polymer:fullerene
bulk-heterojunctions on the microscopic level aimed at improving their
intrinsic stability is crucial for the breakthrough of organic photovoltaics.
These materials are vulnerable to exposure to light and/or oxygen, hence they
involve electronic excitations. To unambiguously probe the excited states of
various multiplicities and their reactions with oxygen, we applied combined
magneto-optical methods based on multifrequency (9 and 275 GHz) electron
paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic
resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and
polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM =
[6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct
photochemical reaction routes, one being fully reversible and related to the
formation of polymer:oxygen charge transfer complexes, the other one,
irreversible, being related to the formation of singlet oxygen under
participation of bound triplet excitons on the polymer chain. With respect to
the blends, we discuss the protective effect of the methanofullerenes on the
conjugated polymer bypassing the triplet exciton generation
High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments
Research efforts ranging from studies of solid helium to searches for a
neutron electric dipole moment require isotopically purified helium with a
ratio of 3He to 4He at levels below that which can be measured using
traditional mass spectroscopy techniques. We demonstrate an approach to such a
measurement using accelerator mass spectroscopy, reaching the 10e-14 level of
sensitivity, several orders of magnitude more sensitive than other techniques.
Measurements of 3He/4He in samples relevant to the measurement of the neutron
lifetime indicate the need for substantial corrections. We also argue that
there is a clear path forward to sensitivity increases of at least another
order of magnitude.Comment: 11 pages, 10 figure
Is \gamma-ray emission from novae affected by interference effects in the 18F(p,\alpha)15O reaction?
The 18F(p,\alpha)15O reaction rate is crucial for constraining model
predictions of the \gamma-ray observable radioisotope 18F produced in novae.
The determination of this rate is challenging due to particular features of the
level scheme of the compound nucleus, 19Ne, which result in interference
effects potentially playing a significant role. The dominant uncertainty in
this rate arises from interference between J\pi=3/2+ states near the proton
threshold (Sp = 6.411 MeV) and a broad J\pi=3/2+ state at 665 keV above
threshold. This unknown interference term results in up to a factor of 40
uncertainty in the astrophysical S-factor at nova temperatures. Here we report
a new measurement of states in this energy region using the 19F(3He,t)19Ne
reaction. In stark contrast with previous assumptions we find at least 3
resonances between the proton threshold and Ecm=50 keV, all with different
angular distributions. None of these are consistent with J\pi= 3/2+ angular
distributions. We find that the main uncertainty now arises from the unknown
proton-width of the 48 keV resonance, not from possible interference effects.
Hydrodynamic nova model calculations performed indicate that this unknown width
affects 18F production by at least a factor of two in the model considered.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev. Let
An experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double {\beta} decay in 100Mo
The rearrangements of protons and neutrons amongst the valence
single-particle orbitals during double {\beta} decay of 100Mo have been
determined by measuring cross sections in (d,p), (p,d), (3He,{\alpha}) and
(3He,d) reactions on 98,100Mo and 100,102Ru targets. The deduced nucleon
occupancies reveal significant discrepancies when compared with theoretical
calculations; the same calculations have previously been used to determine the
nuclear matrix element associated with the decay probability of double {\beta}
decay of the 100Mo system.Comment: 18 pages, 13 figures, 37 pages of supplemental informatio
Production of 26Al in stellar hydrogen-burning environments: spectroscopic properties of states in 27Si
Model predictions of the amount of the radioisotope 26Al produced in
hydrogen-burning environments require reliable estimates of the thermonuclear
rates for the 26gAl(p,{\gamma})27Si and 26mAl(p,{\gamma})27Si reactions. These
rates depend upon the spectroscopic properties of states in 27Si within about 1
MeV of the 26gAl+p threshold (Sp = 7463 keV). We have studied the
28Si(3He,{\alpha})27Si reaction at 25 MeV using a high-resolution
quadrupole-dipole-dipole-dipole magnetic spectrograph. For the first time with
a transfer reaction, we have constrained J{\pi} values for states in 27Si over
Ex = 7.0 - 8.1 MeV through angular distribution measurements. Aside from a few
important cases, we generally confirm the energies and spin-parity assignments
reported in a recent {\gamma}-ray spectroscopy study. The magnitudes of neutron
spectroscopic factors determined from shell-model calculations are in
reasonable agreement with our experimental values extracted using this
reaction.Comment: accepted for publication in Phys. Rev.
Repeated multi-domain cognitive training prevents cognitive decline, anxiety and amyloid pathology found in a mouse model of Alzheimer disease
Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer\u27s disease. To investigate this protective effect, 3-month-old AP
Nuclear structure of 30S and its implications for nucleosynthesis in classical novae
The uncertainty in the 29P(p,gamma)30S reaction rate over the temperature
range of 0.1 - 1.3 GK was previously determined to span ~4 orders of magnitude
due to the uncertain location of two previously unobserved 3+ and 2+ resonances
in the 4.7 - 4.8 MeV excitation region in 30S. Therefore, the abundances of
silicon isotopes synthesized in novae, which are relevant for the
identification of presolar grains of putative nova origin, were uncertain by a
factor of 3. To investigate the level structure of 30S above the proton
threshold (4394.9(7) keV), a charged-particle spectroscopy and an in-beam
gamma-ray spectroscopy experiments were performed. Differential cross sections
of the 32S(p,t)30S reaction were measured at 34.5 MeV. Distorted wave Born
approximation calculations were performed to constrain the spin-parity
assignments of the observed levels. An energy level scheme was deduced from
gamma-gamma coincidence measurements using the 28Si(3He,n-gamma)30S reaction.
Spin-parity assignments based on measurements of gamma-ray angular
distributions and gamma-gamma directional correlation from oriented nuclei were
made for most of the observed levels of 30S. As a result, the resonance
energies corresponding to the excited states in 4.5 MeV - 6 MeV region,
including the two astrophysically important states predicted previously, are
measured with significantly better precision than before. The uncertainty in
the rate of the 29P(p,gamma)30S reaction is substantially reduced over the
temperature range of interest. Finally, the influence of this rate on the
abundance ratios of silicon isotopes synthesized in novae are obtained via 1D
hydrodynamic nova simulations.Comment: 22 pages, 12 figure
High-sensitivity measurement of ^3He−^4He isotopic ratios for ultracold neutron experiments
Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of ^3He to ^4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10^(−14) level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of ^3He/^4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude
- …