585 research outputs found

    Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods

    Full text link
    Understanding of degradation mechanisms in polymer:fullerene bulk-heterojunctions on the microscopic level aimed at improving their intrinsic stability is crucial for the breakthrough of organic photovoltaics. These materials are vulnerable to exposure to light and/or oxygen, hence they involve electronic excitations. To unambiguously probe the excited states of various multiplicities and their reactions with oxygen, we applied combined magneto-optical methods based on multifrequency (9 and 275 GHz) electron paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM = [6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct photochemical reaction routes, one being fully reversible and related to the formation of polymer:oxygen charge transfer complexes, the other one, irreversible, being related to the formation of singlet oxygen under participation of bound triplet excitons on the polymer chain. With respect to the blends, we discuss the protective effect of the methanofullerenes on the conjugated polymer bypassing the triplet exciton generation

    High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.Comment: 11 pages, 10 figure

    Is \gamma-ray emission from novae affected by interference effects in the 18F(p,\alpha)15O reaction?

    Get PDF
    The 18F(p,\alpha)15O reaction rate is crucial for constraining model predictions of the \gamma-ray observable radioisotope 18F produced in novae. The determination of this rate is challenging due to particular features of the level scheme of the compound nucleus, 19Ne, which result in interference effects potentially playing a significant role. The dominant uncertainty in this rate arises from interference between J\pi=3/2+ states near the proton threshold (Sp = 6.411 MeV) and a broad J\pi=3/2+ state at 665 keV above threshold. This unknown interference term results in up to a factor of 40 uncertainty in the astrophysical S-factor at nova temperatures. Here we report a new measurement of states in this energy region using the 19F(3He,t)19Ne reaction. In stark contrast with previous assumptions we find at least 3 resonances between the proton threshold and Ecm=50 keV, all with different angular distributions. None of these are consistent with J\pi= 3/2+ angular distributions. We find that the main uncertainty now arises from the unknown proton-width of the 48 keV resonance, not from possible interference effects. Hydrodynamic nova model calculations performed indicate that this unknown width affects 18F production by at least a factor of two in the model considered.Comment: 5 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    An experimental study of the rearrangements of valence protons and neutrons amongst single-particle orbits during double {\beta} decay in 100Mo

    Get PDF
    The rearrangements of protons and neutrons amongst the valence single-particle orbitals during double {\beta} decay of 100Mo have been determined by measuring cross sections in (d,p), (p,d), (3He,{\alpha}) and (3He,d) reactions on 98,100Mo and 100,102Ru targets. The deduced nucleon occupancies reveal significant discrepancies when compared with theoretical calculations; the same calculations have previously been used to determine the nuclear matrix element associated with the decay probability of double {\beta} decay of the 100Mo system.Comment: 18 pages, 13 figures, 37 pages of supplemental informatio

    Production of 26Al in stellar hydrogen-burning environments: spectroscopic properties of states in 27Si

    Full text link
    Model predictions of the amount of the radioisotope 26Al produced in hydrogen-burning environments require reliable estimates of the thermonuclear rates for the 26gAl(p,{\gamma})27Si and 26mAl(p,{\gamma})27Si reactions. These rates depend upon the spectroscopic properties of states in 27Si within about 1 MeV of the 26gAl+p threshold (Sp = 7463 keV). We have studied the 28Si(3He,{\alpha})27Si reaction at 25 MeV using a high-resolution quadrupole-dipole-dipole-dipole magnetic spectrograph. For the first time with a transfer reaction, we have constrained J{\pi} values for states in 27Si over Ex = 7.0 - 8.1 MeV through angular distribution measurements. Aside from a few important cases, we generally confirm the energies and spin-parity assignments reported in a recent {\gamma}-ray spectroscopy study. The magnitudes of neutron spectroscopic factors determined from shell-model calculations are in reasonable agreement with our experimental values extracted using this reaction.Comment: accepted for publication in Phys. Rev.

    Repeated multi-domain cognitive training prevents cognitive decline, anxiety and amyloid pathology found in a mouse model of Alzheimer disease

    Get PDF
    Education, occupation, and an active lifestyle, comprising enhanced social, physical, and mental components are associated with improved cognitive functions in aged people and may delay the progression of various neurodegenerative diseases including Alzheimer\u27s disease. To investigate this protective effect, 3-month-old AP

    Nuclear structure of 30S and its implications for nucleosynthesis in classical novae

    Full text link
    The uncertainty in the 29P(p,gamma)30S reaction rate over the temperature range of 0.1 - 1.3 GK was previously determined to span ~4 orders of magnitude due to the uncertain location of two previously unobserved 3+ and 2+ resonances in the 4.7 - 4.8 MeV excitation region in 30S. Therefore, the abundances of silicon isotopes synthesized in novae, which are relevant for the identification of presolar grains of putative nova origin, were uncertain by a factor of 3. To investigate the level structure of 30S above the proton threshold (4394.9(7) keV), a charged-particle spectroscopy and an in-beam gamma-ray spectroscopy experiments were performed. Differential cross sections of the 32S(p,t)30S reaction were measured at 34.5 MeV. Distorted wave Born approximation calculations were performed to constrain the spin-parity assignments of the observed levels. An energy level scheme was deduced from gamma-gamma coincidence measurements using the 28Si(3He,n-gamma)30S reaction. Spin-parity assignments based on measurements of gamma-ray angular distributions and gamma-gamma directional correlation from oriented nuclei were made for most of the observed levels of 30S. As a result, the resonance energies corresponding to the excited states in 4.5 MeV - 6 MeV region, including the two astrophysically important states predicted previously, are measured with significantly better precision than before. The uncertainty in the rate of the 29P(p,gamma)30S reaction is substantially reduced over the temperature range of interest. Finally, the influence of this rate on the abundance ratios of silicon isotopes synthesized in novae are obtained via 1D hydrodynamic nova simulations.Comment: 22 pages, 12 figure

    High-sensitivity measurement of ^3He−^4He isotopic ratios for ultracold neutron experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of ^3He to ^4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10^(−14) level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of ^3He/^4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude
    • …
    corecore