38 research outputs found

    Improving UHT techniques

    No full text

    Microbiology of raw and market milks

    No full text

    Volatile sulphur compounds in UHT milk

    No full text
    Sugarcane breeders in Australia combine data across four selection programs to obtain estimates of breeding value for parents. When these data are combined with full pedigree information back to founding parents, computing limitations mean it is not possible to obtain information on all parents. Family data from one sugarcane selection program were analysed using two different genetic models to investigate how different depths of pedigree and amount of data affect the reliability of estimating breeding value of sugarcane parents. These were the parental and animal models. Additive variance components and breeding values estimated from different amounts of information were compared for both models. The accuracy of estimating additive variance components and breeding values improved as more pedigree information and historical data were included in analyses. However, adding years of data had a much larger effect on the estimation of variance components of the population, and breeding values of the parents. To accurately estimate breeding values of all sugarcane parents, a minimum of three generations of pedigree and 5 years of historical data were required, while more information (four generations of pedigree and 7 years of historical data) was required when identifying top parents to be selected for future cross pollination

    Reducing fouling during UHT treatment of goat's milk

    No full text
    Whole fresh goat's milk was heat treated at 135 degrees C for 4 s using a miniature UHT plant. The temperature of the milk in the preheating and sterilizer sections, and the milk flow rate were monitored to evaluate the overall heat transfer coefficient (OHTC). The decrease in OHTC was used to estimate the extent of fouling. Goat's milk fouled very quickly and run times of the UHT plant were short. The use of sodium hexametaphosphate, trisodium citrate and cation exchange resins to reduce ionic calcium prior to UHT processing, increased the pH and alcohol stability of the milk and markedly increased the run time of the UHT plant

    Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation - A review

    No full text
    Biogenic amines are non-volatile amines formed by decarboxylation of amino acids. Although many biogenic amines have been found in fish, only histamine, cadaverine, and putrescine have been found to be significant in fish safety and quality determination. Despite a widely reported association between histamine and scombroid food poisoning, histamine alone appears to be insufficient to cause food toxicity. Putrescine and cadaverine have been suggested to potentiate histamine toxicity. With respect to spoilage on the other hand, only cadaverine has been found to be a useful index of the initial stage of fish decomposition. The relationship between biogenic amines, sensory evaluation, and trimethylamine during spoilage are influenced by bacterial composition and free amino acid content. A mesophilic bacterial count of log 6-7 cfu/g has been found to be associated with 5 mg histamine/100 g fish, the Food and Drug Administration (FDA) maximum allowable histamine level. In vitro studies have shown the involvement of cadaverine and putrescine in the formation of nitrosamines, nitrosopiperidine (NPIP), and nitrosopyrrolidine (NPYR), respectively. In addition, impure salt, high temperature, and low pH enhance nitrosamine formation, whereas pure sodium chloride inhibits their formation. Understanding the relationships between biogenic amines and their involvement in the formation of nitrosamines could explain the mechanism of scombroid poisoning and assure the safety of many fish products
    corecore