847 research outputs found

    Linearly Coupled Bose-Einstein Condensates: From Rabi Oscillations and Quasi-Periodic Solutions to Oscillating Domain Walls and Spiral Waves

    Get PDF
    In this paper, an exact unitary transformation is examined that allows for the construction of solutions of coupled nonlinear Schr{\"o}dinger equations with additional linear field coupling, from solutions of the problem where this linear coupling is absent. The most general case where the transformation is applicable is identified. We then focus on the most important special case, namely the well-known Manakov system, which is known to be relevant for applications in Bose-Einstein condensates consisting of different hyperfine states of 87^{87}Rb. In essence, the transformation constitutes a distributed, nonlinear as well as multi-component generalization of the Rabi oscillations between two-level atomic systems. It is used here to derive a host of periodic and quasi-periodic solutions including temporally oscillating domain walls and spiral waves.Comment: 6 pages, 4 figures, Phys. Rev. A (in press

    Instabilities of one-dimensional stationary solutions of the cubic nonlinear Schrodinger equation

    Full text link
    The two-dimensional cubic nonlinear Schrodinger equation admits a large family of one-dimensional bounded traveling-wave solutions. All such solutions may be written in terms of an amplitude and a phase. Solutions with piecewise constant phase have been well studied previously. Some of these solutions were found to be stable with respect to one-dimensional perturbations. No such solutions are stable with respect to two-dimensional perturbations. Here we consider stability of the larger class of solutions whose phase is dependent on the spatial dimension of the one-dimensional wave form. We study the spectral stability of such nontrivial-phase solutions numerically, using Hill's method. We present evidence which suggests that all such nontrivial-phase solutions are unstable with respect to both one- and two-dimensional perturbations. Instability occurs in all cases: for both the elliptic and hyperbolic nonlinear Schrodinger equations, and in the focusing and defocusing case.Comment: Submitted: 13 pages, 3 figure

    Generation Expansion Models including Technical Constraints and Demand Uncertainty

    Get PDF
    This article presents a Generation Expansion Model of the power system taking into account the operational constraints and the uncertainty of long-term electricity demand projections. The model is based on a discretization of the load duration curve and explicitly considers that power plant ramping capabilities must meet demand variations. A model predictive control method is used to improve the long-term planning decisions while considering the uncertainty of demand projections. The model presented in this paper allows integrating technical constraints and uncertainty in the simulations, improving the accuracy of the results, while maintaining feasible computational time. Results are tested over three scenarios based on load data of an energy retailer in Colombia

    Multi-dimensional schemes for scalar advection

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77204/1/AIAA-1991-1532-834.pd

    Progress on multidimensional upwind Euler solvers for unstructured grids

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76503/1/AIAA-1991-1550-511.pd

    Vortices in Bose-Einstein Condensates: Some Recent Developments

    Full text link
    In this brief review we summarize a number of recent developments in the study of vortices in Bose-Einstein condensates, a topic of considerable theoretical and experimental interest in the past few years. We examine the generation of vortices by means of phase imprinting, as well as via dynamical instabilities. Their stability is subsequently examined in the presence of purely magnetic trapping, and in the combined presence of magnetic and optical trapping. We then study pairs of vortices and their interactions, illustrating a reduced description in terms of ordinary differential equations for the vortex centers. In the realm of two vortices we also consider the existence of stable dipole clusters for two-component condensates. Last but not least, we discuss mesoscopic patterns formed by vortices, the so-called vortex lattices and analyze some of their intriguing dynamical features. A number of interesting future directions are highlighted.Comment: 24 pages, 8 figs, ws-mplb.cls, to appear in Modern Physics Letters B (2005

    Cerenkov-like radiation in a binary Schr{\"o}dinger flow past an obstacle

    Get PDF
    We consider the dynamics of two coupled miscible Bose-Einstein condensates, when an obstacle is dragged through them. The existence of two different speeds of sound provides the possibility for three dynamical regimes: when both components are subcritical, we do not observe nucleation of coherent structures; when both components are supercritical they both form dark solitons in one dimension (1D) and vortices or rotating vortex dipoles in two dimensions (2D); in the intermediate regime, we observe the nucleation of a structure in the form of a dark-antidark soliton in 1D; subcritical component; the 2D analog of such a structure, a vortex-lump, is also observed.Comment: 4 pages, 4 figures, submitted to Phys Rev
    corecore