13,459 research outputs found
Image reconstruction in fluorescence molecular tomography with sparsity-initialized maximum-likelihood expectation maximization
We present a reconstruction method involving maximum-likelihood expectation
maximization (MLEM) to model Poisson noise as applied to fluorescence molecular
tomography (FMT). MLEM is initialized with the output from a sparse
reconstruction-based approach, which performs truncated singular value
decomposition-based preconditioning followed by fast iterative
shrinkage-thresholding algorithm (FISTA) to enforce sparsity. The motivation
for this approach is that sparsity information could be accounted for within
the initialization, while MLEM would accurately model Poisson noise in the FMT
system. Simulation experiments show the proposed method significantly improves
images qualitatively and quantitatively. The method results in over 20 times
faster convergence compared to uniformly initialized MLEM and improves
robustness to noise compared to pure sparse reconstruction. We also
theoretically justify the ability of the proposed approach to reduce noise in
the background region compared to pure sparse reconstruction. Overall, these
results provide strong evidence to model Poisson noise in FMT reconstruction
and for application of the proposed reconstruction framework to FMT imaging
Incorporating reflection boundary conditions in the Neumann series radiative transport equation: Application to photon propagation and reconstruction in diffuse optical imaging
We propose a formalism to incorporate boundary conditions in a Neumann-series-based radiative transport equation. The formalism accurately models the reflection of photons at the tissue-external medium interface using Fresnelâs equations. The formalism was used to develop a gradient descent-based image reconstruction technique. The proposed methods were implemented for 3D diffuse optical imaging. In computational studies, it was observed that the average root-mean-square error (RMSE) for the output images and the estimated absorption coefficients reduced by 38% and 84%, respectively, when the reflection boundary conditions were incorporated. These results demonstrate the importance of incorporating boundary conditions that model the reflection of photons at the tissue-external medium interface
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control System
First Experiences Integrating PC Distributed I/O Into Argonne's ATLAS Control
System The roots of ATLAS (Argonne Tandem-Linac Accelerator System) date back
to the early 1960s. Located at the Argonne National Laboratory, the accelerator
has been designated a National User Facility, which focuses primarily on
heavy-ion nuclear physics. Like the accelerator it services, the control system
has been in a constant state of evolution. The present real-time portion of the
control system is based on the commercial product Vsystem [1]. While Vsystem
has always been capable of distributed I/O processing, the latest offering of
this product provides for the use of relatively inexpensive PC hardware and
software. This paper reviews the status of the ATLAS control system, and
describes first experiences with PC distributed I/O.Comment: ICALEPCS 2001 Conference, PSN WEAP027, 3 pages, 1 figur
Exact solution of a model of time-dependent evolutionary dynamics in a rugged fitness landscape
A simplified form of the time dependent evolutionary dynamics of a
quasispecies model with a rugged fitness landscape is solved via a mapping onto
a random flux model whose asymptotic behavior can be described in terms of a
random walk. The statistics of the number of changes of the dominant genotype
from a finite set of genotypes are exactly obtained confirming existing
conjectures based on numerics.Comment: 5 pages RevTex 2 figures .ep
On variations of the brightness of type Ia supernovae with the age of the host stellar population
Recent observational studies of type Ia supernovae (SNeIa) suggest
correlations between the peak brightness of an event and the age of the
progenitor stellar population. This trend likely follows from properties of the
progenitor white dwarf (WD), such as central density, that follow from
properties of the host stellar population. We present a statistically
well-controlled, systematic study utilizing a suite of multi-dimensional SNeIa
simulations investigating the influence of central density of the progenitor WD
on the production of Fe-group material, particularly radioactive Ni-56, which
powers the light curve. We find that on average, as the progenitor's central
density increases, production of Fe-group material does not change but
production of Ni-56 decreases. We attribute this result to a higher rate of
neutronization at higher density. The central density of the progenitor is
determined by the mass of the WD and the cooling time prior to the onset of
mass transfer from the companion, as well as the subsequent accretion heating
and neutrino losses. The dependence of this density on cooling time, combined
with the result of our central density study, offers an explanation for the
observed age-luminosity correlation: a longer cooling time raises the central
density at ignition thereby producing less Ni-56 and thus a dimmer event. While
our ensemble of results demonstrates a significant trend, we find considerable
variation between realizations, indicating the necessity for averaging over an
ensemble of simulations to demonstrate a statistically significant result.Comment: 5 pages, 4 figures, 1 table, accepted to ApJ
Graphene field-effect transistors based on boron nitride gate dielectrics
Graphene field-effect transistors are fabricated utilizing single-crystal
hexagonal boron nitride (h-BN), an insulating isomorph of graphene, as the gate
dielectric. The devices exhibit mobility values exceeding 10,000 cm2/V-sec and
current saturation down to 500 nm channel lengths with intrinsic
transconductance values above 400 mS/mm. The work demonstrates the favorable
properties of using h-BN as a gate dielectric for graphene FETs.Comment: 4 pages, 8 figure
Extinction Map of Baade's Window
Recently Wo\'zniak \& Stanek (1996) proposed a new method to investigate
interstellar extinction, based on two band photometry, which uses red clump
stars as a means to construct the reddening curve. I apply this method to the
color-magnitude diagrams obtained by the Optical Gravitational Lensing
Experiment (OGLE) to construct an extinction map of region of
Baade's Window, with resolution of . Such a map should be
useful for studies of this frequently observed region of the Galactic bulge.
The map and software useful for its applications are available via {\tt
anonymous ftp}. The total extinction varies from to
within the field of view centered on (18:03:20.9,--30:02:06), i.e. . The
ratio is determined with this new method.Comment: revised version accepted for publication in ApJ Letters, 8 pages,
uuencoded PostScript with 4 figures included; complete paper available
through WWW at http://www.astro.princeton.edu/~library/prep.html; tables and
auxiliary software available at
ftp://www.astro.princeton.edu/stanek/Extinctio
The unreasonable effectiveness of equilibrium-like theory for interpreting non-equilibrium experiments
There has been great interest in applying the results of statistical
mechanics to single molecule experiements. Recent work has highlighted
so-called non-equilibrium work-energy relations and Fluctuation Theorems which
take on an equilibrium-like (time independent) form. Here I give a very simple
heuristic example where an equilibrium result (the barometric law for colloidal
particles) arises from theory describing the {\em thermodynamically}
non-equilibrium phenomenon of a single colloidal particle falling through
solution due to gravity. This simple result arises from the fact that the
particle, even while falling, is in {\em mechanical} equilibrium (gravitational
force equal the viscous drag force) at every instant. The results are
generalized by appeal to the central limit theorem. The resulting time
independent equations that hold for thermodynamically non-equilibrium (and even
non-stationary) processes offer great possibilities for rapid determination of
thermodynamic parameters from single molecule experiments.Comment: 6 page
Electronic compressibility of layer polarized bilayer graphene
We report on a capacitance study of dual gated bilayer graphene. The measured
capacitance allows us to probe the electronic compressibility as a function of
carrier density, temperature, and applied perpendicular electrical displacement
D. As a band gap is induced with increasing D, the compressibility minimum at
charge neutrality becomes deeper but remains finite, suggesting the presence of
localized states within the energy gap. Temperature dependent capacitance
measurements show that compressibility is sensitive to the intrinsic band gap.
For large displacements, an additional peak appears in the compressibility as a
function of density, corresponding to the presence of a 1-dimensional van Hove
singularity (vHs) at the band edge arising from the quartic bilayer graphene
band structure. For D > 0, the additional peak is observed only for electrons,
while D < 0 the peak appears only for holes. This asymmetry that can be
understood in terms of the finite interlayer separation and may be useful as a
direct probe of the layer polarization
- âŠ