46 research outputs found
Bacterial symbionts of the leafhopper "Evacanthus interruptus" (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae : Evacanthinae)
Plant sap-feeding hemipterans harbor obligate symbiotic microorganisms which are responsible for the synthesis of amino acids missing in their diet. In this study, we characterized the obligate symbionts hosted in the body of the xylem-feeding leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: Evacanthini) by means of histological, ultrastructural and molecular methods. We observed that E. interruptus is associated with two types of symbiotic microorganisms: bacterium ‘Candidatus Sulcia muelleri’ (Bacteroidetes) and betaproteobacterium that is closely related to symbionts which reside in two other Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis (Bathysmatophorinae: Bathysmatophorini). Both symbionts are harbored in their own bacteriocytes which are localized between the body wall and ovaries. In E. interruptus, both Sulcia and betaproteobacterial symbionts are transovarially transmitted from one generation to the next. In the mature female, symbionts leave the bacteriocytes and gather around the posterior pole of the terminal oocytes. Then, they gradually pass through the cytoplasm of follicular cells surrounding the posterior pole of the oocyte and enter the space between them and the oocyte. The bacteria accumulate in the deep depression of the oolemma and form a characteristic ‘symbiont ball’. In the light of the results obtained, the phylogenetic relationships within modern Cicadomorpha and some Cicadellidae subfamilies are discussed
Comparative cytogenetics of Auchenorrhyncha (Hemiptera, Homoptera): a review
A comprehensive review of cytogenetic features is provided for the large hemipteran suborder Auche norrhyncha, which currently contains approximately 42,000 valid species. This review is based on the
analysis of 819 species, 483 genera, and 31 families representing all presently recognized Auchenorrhyn cha superfamilies, e.i. Cicadoidea (cicadas), Cercopoidea (spittle bugs), Membracoidea (leafhoppers and
treehoppers), Myerslopioidea (ground-dwelling leafhoppers), and Fulgoroidea (planthoppers). History
and present status of chromosome studies are described, as well as the structure of chromosomes, chro mosome counts, trends and mechanisms of evolution of karyotypes and sex determining systems, their
variation at different taxonomic levels and most characteristic (modal) states, occurrence of partheno genesis, polyploidy, B-chromosomes and chromosome rearrangements, and methods used for cytoge netic analysis of Auchenorrhyncha.info:eu-repo/semantics/publishedVersio
Changes to the Fossil Record of Insects through Fifteen Years of Discovery
The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well