7,240 research outputs found

    Hadrons in AdS/QCD models

    Full text link
    We discuss applications of gauge/gravity duality to describe the spectrum of light hadrons. We compare two particular 5-dimensional approaches: a model with an infrared deformed Anti-de Sitter metric and another one based on a dynamical AdS/QCD framework with back-reacted geometry in a dilaton/gravity background. The models break softly the scale invariance in the infrared region and allow mass gap for the field excitations in the gravity description, while keeping the conformal property of the metric close to the four-dimensional boundary. The models provide linear Regge trajectories for light mesons, associated with specially designed infrared gravity properties. We also review the results for the decay widths of the f0's into two pions, as overlap integrals between mesonic string amplitudes, which are in qualitative agreement with data

    Dark/Visible Parallel Universes and Big Bang Nucleosynthesis

    Full text link
    We develop a model for visible matter-dark matter interaction based on the exchange of a massive gray boson called herein the Mulato. Our model hinges on the assumption that all known particles in the visible matter have their counterparts in the dark matter. We postulate six families of particles five of which are dark. This leads to the unavoidable postulation of six parallel worlds, the visible one and five invisible worlds. A close study of big bang nucleosynthesis (BBN), baryon asymmetries, cosmic microwave background (CMB) bounds, galaxy dynamics, together with the Standard Model assumptions, help us to set a limit on the mass and width of the new gauge boson. Modification of the statistics underlying the kinetic energy distribution of particles during the BBN is also discussed. The changes in reaction rates during the BBN due to a departure from the Debye-Hueckel electron screening model is also investigated.Comment: Invited talk at the Workshops "CompStar: the physics and astrophysics of compact stars", Tahiti, June 4-8, 2012, "New Directions in Nuclear Astrophysics", Castiglion Fiorentino, Italy, June 18-22, 2012, and "Carpathian Summer School of Physics", Sinaia, Romania, June 24 - July 7, 2012. To be published in AIP Proceeding

    Generation of photons from vacuum in cavity via time-modulation of a qubit invisible to the field

    Full text link
    We propose a scheme for generation of photons from vacuum due to time-modulation of a quantum system coupled indirectly to the cavity field through some ancilla quantum subsystem. We consider the simplest case when the modulation is applied to an artificial 2-level atom (we call t-qubit), while the ancilla is a stationary qubit coupled via the dipole interaction both to the cavity and t-qubit. We find that tripartite entangled states with a small number of photons can be generated from the system ground state under resonant modulations, even when the t-qubit is far detuned from both the ancilla and the cavity, provided its bare and modulation frequencies are properly adjusted as function of other system parameters. We attest our approximate analytic results by numeric simulations and show that photon generation from vacuum persists in the presence of common dissipation mechanisms

    Vortex and gap generation in gauge models of graphene

    Full text link
    Effective quantum field theoretical continuum models for graphene are investigated. The models include a complex scalar field and a vector gauge field. Different gauge theories are considered and their gap patterns for the scalar, vector, and fermion excitations are investigated. Different gauge groups lead to different relations between the gaps, which can be used to experimentally distinguish the gauge theories. In this class of models the fermionic gap is a dynamic quantity. The finite-energy vortex solutions of the gauge models have the flux of the "magnetic field" quantized, making the Bohm-Aharonov effect active even when external electromagnetic fields are absent. The flux comes proportional to the scalar field angular momentum quantum number. The zero modes of the Dirac equation show that the gauge models considered here are compatible with fractionalization
    • …
    corecore