31,978 research outputs found

    A diagrammatic representation for entities and mereotopological relations in ontologies

    Get PDF
    In the graphical representation of ontologies, it is customary to use graph theory as the representational background. We claim here that the standard graph-based approach has a number of limitations. We focus here on a problem in the graph-based representation of ontologies in complex domains such as biomedical, engineering and manufacturing: lack of mereotopological representation. Based on such limitation, we proposed a diagrammatic way to represent an entity’s structure and various forms of mereotopological relationships between the entities

    Neural Networks Architecture Evaluation in a Quantum Computer

    Full text link
    In this work, we propose a quantum algorithm to evaluate neural networks architectures named Quantum Neural Network Architecture Evaluation (QNNAE). The proposed algorithm is based on a quantum associative memory and the learning algorithm for artificial neural networks. Unlike conventional algorithms for evaluating neural network architectures, QNNAE does not depend on initialization of weights. The proposed algorithm has a binary output and results in 0 with probability proportional to the performance of the network. And its computational cost is equal to the computational cost to train a neural network

    On bicluster aggregation and its benefits for enumerative solutions

    Full text link
    Biclustering involves the simultaneous clustering of objects and their attributes, thus defining local two-way clustering models. Recently, efficient algorithms were conceived to enumerate all biclusters in real-valued datasets. In this case, the solution composes a complete set of maximal and non-redundant biclusters. However, the ability to enumerate biclusters revealed a challenging scenario: in noisy datasets, each true bicluster may become highly fragmented and with a high degree of overlapping. It prevents a direct analysis of the obtained results. To revert the fragmentation, we propose here two approaches for properly aggregating the whole set of enumerated biclusters: one based on single linkage and the other directly exploring the rate of overlapping. Both proposals were compared with each other and with the actual state-of-the-art in several experiments, and they not only significantly reduced the number of biclusters but also consistently increased the quality of the solution.Comment: 15 pages, will be published by Springer Verlag in the LNAI Series in the book Advances in Data Minin

    Broad Histogram Method for Continuous Systems: the XY-Model

    Full text link
    We propose a way of implementing the Broad Histogram Monte Carlo method to systems with continuous degrees of freedom, and we apply these ideas to investigate the three-dimensional XY-model with periodic boundary conditions. We have found an excellent agreement between our method and traditional Metropolis results for the energy, the magnetization, the specific heat and the magnetic susceptibility on a very large temperature range. For the calculation of these quantities in the temperature range 0.7<T<4.7 our method took less CPU time than the Metropolis simulations for 16 temperature points in that temperature range. Furthermore, it calculates the whole temperature range 1.2<T<4.7 using only 2.2 times more computer effort than the Histogram Monte Carlo method for the range 2.1<T<2.2. Our way of treatment is general, it can also be applied to other systems with continuous degrees of freedom.Comment: 23 pages, 10 Postscript figures, to be published in Int. J. Mod. Phys.

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities
    • …
    corecore