4,806 research outputs found
Small ring testing of a creep resistant material
Many components in conventional and nuclear power plant, aero-engines, chemical plant etc., operate at temperatures which are high enough for creep to occur. These include steam pipes, pipe branches, gas and steam turbine blades, etc. The manufacture of such components may also require welds to be part of them. In most cases, only nominal operating conditions (i.e. pressure, temperatures, system load, etc.) are known and hence precise life predictions for these components are not possible. Also, the proportion of life consumed will vary from position to position within a component. Hence, non-destructive techniques are adopted to assist in making decisions on whether to repair, continue operating or replace certain components. One such approach is to test a small sample removed from the component to make small creep test specimens which can be tested to give information on the remaining creep life of the component. When such a small sample cannot be removed from the operating component, e.g. in the case of small components, the component can be taken out of operation in order to make small creep test specimens, the results from which can then be used to assist with making decisions regarding similar or future components. This paper presents a small creep test specimen which can be used for the testing of particularly strong and creep resistant materials, such as nickel-based superalloys
Phyllosticta citriasiana sp. nov., the cause of Citrus tan spot of Citrus maxima in Asia
Guignardia citricarpa, the causal agent of Citrus Black Spot, is subject to phytosanitary legislation in the European Union and the U.S.A. This species is frequently confused with G. mangiferae, which is a non-pathogenic, and is commonly isolated as an endophyte from citrus fruits and a wide range of other hosts. Recently, necrotic spots similar to those caused by G. citricarpa were observed on fruit of Citrus maxima intercepted in consignments exported from Asia. In these spots, pycnidia and conidia of a Guignardia species closely resembling G. citricarpa were observed, and therefore measures were taken for the consignments in line with the European Union legislation for G. citricarpa. To determine the identity of the causal organism on this new host, fungal isolates were subjected to DNA sequence analysis of the internal transcribed spacer region (ITS1, 5.8S, ITS2), translation elongation factor 1-alpha (TEF1) and actin genes. A combined phylogenetic tree resolved three species correlating to G. citricarpa, G. mangiferae and a previously undescribed species, Phyllosticta citriasiana sp. nov., closely related to G. citricarpa. Morphologically P. citriasiana can be distinguished from G. citricarpa by having larger conidia, longer conidial appendages, and in not producing any diffuse yellow pigment when cultivated on oatmeal agar (OA). Furthermore, it is distinguishable from G. mangiferae by having smaller conidia, with a narrower mucoid sheath. In culture, colonies of P. citriasiana can also be distinguished from G. citricarpa and G. mangiferae by being darker shades of grey and black on OA, malt extract agar (MEA), potato-dextrose agar, and cornmeal agar. Furthermore, cultures of P. citriasiana achieved optimal growth after 2 weeks at 21-27°C, and ceased to grow at 30-33°C. In contrast, colonies of G. citricarpa and G. mangiferae achieved optimal growth at 27-30°C, and ceased to grow at 30-36°C Colonies of P. citriasiana also grew faster than those of G. citricarpa and G. mangiferae on OA and MEA. Phyllosticta citriasiana appears to be a harmful pathogen of Citrus maxima, causing a tan spot on fruit, underlining the need for further surveys and research to determine its distribution and host range
Multi-locus phylogeny of Pleosporales: a taxonomic, ecological and evolutionary re-evaluation
Five loci, nucSSU, nucLSU rDNA, TEF1, RPB1 and RPB2, are used for analysing 129 pleosporalean taxa representing 59 genera and 15 families in the current classification of Pleosporales. The suborder Pleosporineae is emended to include four families, viz. Didymellaceae, Leptosphaeriaceae, Phaeosphaeriaceae and Pleosporaceae. In addition, two new families are introduced, i.e. Amniculicolaceae and Lentitheciaceae. Pleomassariaceae is treated as a synonym of Melanommataceae, and new circumscriptions of Lophiostomataceae s. str, Massarinaceae and Lophiotrema are proposed. Familial positions of Entodesmium and Setomelanomma in Phaeosphaeriaceae, Neophaeosphaeria in Leptosphaeriaceae, Leptosphaerulina, Macroventuria and Platychora in Didymellaceae, Pleomassaria in Melanommataceae and Bimuria, Didymocrea, Karstenula and Paraphaeosphaeria in Montagnulaceae are clarified. Both ecological and morphological characters show varying degrees of phylogenetic significance. Pleosporales is most likely derived from a saprobic ancestor with fissitunicate asci containing conspicuous ocular chambers and apical rings. Nutritional shifts in Pleosporales likely occured from saprotrophic to hemibiotrophic or biotrophic
The development of a novel technique for small ring specimen tensile testing
The wide scale use of small specimens in routine testing programs could significantly reduce material resource requirements (factors of 10 are easily achievable). This is a major benefit to situations where there is not enough material to manufacture conventional, full-size specimens, such as first-stage gas turbine blade roots. However, limitations exist due to concerns over size effects, manufacturing difficulties, uncertainties related to the application of representative loading conditions and complex interpretation procedures of non-standard data. Due to these limitations, small specimen testing techniques have been mostly applied in ranking exercises and to determine approximate or simple material parameters such as Young’s modulus, minimum creep strain rate and fracture toughness. The small ring method is a novel, high sensitivity small specimen technique for creep testing that has been extended in the present work to the determination of tensile material properties. The main advantages of the small ring specimen are that it is self-aligning and has a large equivalent gauge length in comparison to other small specimens, resulting in much higher testing sensitivity. In the present work, this specimen type mimics conventional, full-size, monotonic testing, allowing for observations of elastic and plastic material response to be made. Wrought aluminium alloy 7175-T7153 small rings were tested at room temperature at 5 different loading (displacement) rates and the results compared to conventional, full-size, monotonic specimen equivalents. Finite element analysis was conducted in order to evaluate the equivalent gauge section and equivalent gauge length in the small ring specimen (which varied between circa 0.35–1.4 mm2 and 25–45 mm, respectively) to facilitate these comparisons. An analytical solution has also been derived in order to validate the finite element analysis
The luminosity and stellar mass Fundamental Plane of early-type galaxies
From a sample of ~50000 early-type galaxies from the SDSS, we measured the
traditional Fundamental Plane in four bands. We then replaced luminosity with
stellar mass, and measured the "stellar mass" FP. The FP steepens slightly as
one moves from shorter to longer wavelengths: the orthogonal fit has slope 1.40
in g and 1.47 in z. The FP is thinner at longer wavelengths: scatter is 0.062
dex in g, 0.054 dex in z. The scatter is larger at small galaxy sizes/masses;
at large masses measurement errors account for essentially all of the observed
scatter. The FP steepens further when luminosity is replaced with stellar mass,
to slope ~ 1.6. The intrinsic scatter also reduces further, to 0.048 dex. Since
color and stellar mass-to-light ratio are closely related, this explains why
color can be thought of as the fourth FP parameter. However, the slope of the
stellar mass FP remains shallower than the value of 2 associated with the
virial theorem. This is because the ratio of dynamical to stellar mass
increases at large masses as M_d^0.17. The face-on view of the stellar mass
kappa-space suggests that there is an upper limit to the stellar density for a
given dynamical mass, and this decreases at large masses: M_*/R_e^3 ~ M_d^-4/3.
We also study how the estimated coefficients a and b of the FP are affected by
other selection effects (e.g. excluding small sigma biases a high; excluding
fainter L biases a low). These biases are seen in FPs which have no intrinsic
curvature, so the observation that a and b scale with L and sigma is not, by
itself, evidence that the Plane is warped. We show that the FP appears to curve
sharply downwards at the small mass end, and more gradually downwards towards
larger masses. Whereas the drop at small sizes is real, most of the latter
effect is due to correlated errors.Comment: 17 pages, 15 figures, MNRAS in press. Added appendix on possible
sample contamination by disk
Spectral-based k-corrections and implications for the colour-magnitude relation of E/S0s and its evolution
We select a sample of 70378 E/S0 (early-type) galaxies at 0<z<0.36 from the
Sloan Digital Sky Survey, excluding disk and star-forming galaxies. We estimate
g and r magnitudes in the observer- and rest-frames directly from the SDSS DR6
spectra; this provides an object-by-object estimate of the k-correction. We use
the k-corrections from the spectra to study the evolution of the rest-frame
colour-magnitude relation (CMR) and colour-sigma (velocity dispersion) relation
(CsigmaR). The evolution is very sensitive to the k-correction. Both the CMR
and CsigmaR evolve blueward with increasing redshift, approximately in
agreement with passive evolution models with age approx. 12 Gyr. The slope and
zero-point of the CMR depend on whether colours were defined in fixed physical
or angular apertures, a consequence of the fact that the centers of these
objects tend to be redder: the relation is steeper for fixed angular apertures.
One the other hand, the CsigmaR slope does not show this dependence on the
aperture in which the colour was defined, suggesting that colour gradients are
correlated with residuals from the sigma-M_r relation. As these residuals are
age indicators, our findings suggest that colour gradients correlate with the
age of the stellar population.Comment: 16 pages, 24 figures, accepted for publication in MNRAS (minor
revisions and 3 new figures added following referees comments
A multi-gene phylogeny of Lactifluus (Basidiomycota, Russulales) translated into a new infrageneric classification of the genus
Infrageneric relations of the genetically diverse milkcap genus Lactifluus (Russulales, Basidiomycota) are poorly known. Currently used classification systems still largely reflect the traditional, mainly morphological, characters used for infrageneric delimitations of milkcaps. Increased sampling, combined with small-scale molecular studies, show that this genus is underexplored and in need of revision. For this study, we assembled an extensive dataset of the genus Lactifluus, comprising 80 % of all known species and 30 % of the type collections. To unravel the infrageneric relationships within this genus, we combined a multi-gene molecular phylogeny, based on nuclear ITS, LSU, RPB2 and RPB1, with a morphological study, focussing on five important characteristics (fruit body type, presence of a secondary velum, colour reaction of the latex/context, pileipellis type and presence of true cystidia). Lactifluus comprises four supported subgenera, each containing several supported clades. With extensive sampling, ten new clades and at least 17 new species were discovered, which highlight the high diversity in this genus. The traditional infrageneric classification is only partly maintained and nomenclatural changes are proposed. Our morphological study shows that the five featured characteristics are important at different evolutionary levels, but further characteristics need to be studied to find morphological support for each clade. This study paves the way for a more detailed investigation of biogeographical history and character evolution within Lactifluus
Minimal nets and minimal minimal surfaces
The 3-periodic nets of genus 3 ('minimal nets') are reviewed and their symmetries re-examined. Although they are all crystallographic, seven of the 15 only have maximum-symmetry embeddings if some links are allowed to have zero length. The connection bet
A Search for the Most Massive Galaxies. II. Structure, Environment and Formation
We study a sample of 43 early-type galaxies, selected from the SDSS because
they appeared to have velocity dispersion > 350 km/s. High-resolution
photometry in the SDSS i passband using HRC-ACS on board the HST shows that
just less than half of the sample is made up of superpositions of two or three
galaxies, so the reported velocity dispersion is incorrect. The other half of
the sample is made up of single objects with genuinely large velocity
dispersions. None of these objects has sigma larger than 426 +- 30 km/s. These
objects define rather different relations than the bulk of the early-type
galaxy population: for their luminosities, they are the smallest, most massive
and densest galaxies in the Universe. Although the slopes of the scaling
relations they define are rather different from those of the bulk of the
population, they lie approximately parallel to those of the bulk "at fixed
sigma". These objects appear to be of two distinct types: the less luminous
(M_r>-23) objects are rather flattened and extremely dense for their
luminosities -- their properties suggest some amount of rotational support and
merger histories with abnormally large amounts of gaseous dissipation. The more
luminous objects (M_r<-23) tend to be round and to lie in or at the centers of
clusters. Their properties are consistent with the hypothesis that they are
BCGs. Models in which BCGs form from predominantly radial mergers having little
angular momentum predict that they should be prolate. If viewed along the major
axis, such objects would appear to have abnormally large sigma for their sizes,
and to be abnormally round for their luminosities. This is true of the objects
in our sample once we account for the fact that the most luminous galaxies
(M_r<-23.5), and BCGs, become slightly less round with increasing luminosity.Comment: 21 pages, 19 figures, accepted for publication in MNRA
- …