3,007 research outputs found

    A method to determine the parameters of black holes in AGNs and galactic X-ray sources with periodic modulation of variability

    Get PDF
    We propose a simple and unambiguous way to deduce the parameters of black holes which may reside in AGNs and some types of X-ray binaries. The black-hole mass and angular momentum are determined in physical units. The method is applicable to the sources with periodic components of variability, provided one can assume the following: (i) Variability is due to a star or a stellar-mass compact object orbiting the central black hole and passing periodically through an equatorial accretion disk (variability time-scale is given by the orbital period). (ii) The star orbits almost freely, deviation of its trajectory due to passages through the disk being very weak (secular); the effect of the star on the disk, on the other hand, is strong enough to yield observable photometric and spectroscopic features. (iii) The gravitational field within the nucleus is that of the (Kerr) black hole, the star and the disk contribute negligibly.Comment: 17 pages, 4 figures, 2 tables; LaTeX2.09 (aas2pp4.sty); submitted to the Astrophysical Journal; also available at http://astro.mff.cuni.cz/karas/papers.htm with additional illustration

    Vainshtein mechanism in Gauss-Bonnet gravity and Galileon aether

    Full text link
    We derive field equations of Gauss-Bonnet gravity in 4 dimensions after dimensional reduction of the action and demonstrate that in this scenario Vainshtein mechanism operates in the flat spherically symmetric background. We show that inside this Vainshtein sphere the fifth force is negligibly small compared to the gravitational force. We also investigate stability of the spherically symmetric solution, clarify the vocabulary used in the literature about the hyperbolicity of the equation and the ghost-Laplacian stability conditions. We find superluminal behavior of the perturbation of the field in the radial direction. However, because of the presence of the non linear terms, the structure of the space-time is modified and as a result the field does not propagate in the Minkowski metric but rather in an "aether" composed by the scalar field π(r)\pi(r). We thereby demonstrate that the superluminal behavior does not create time paradoxes thank to the absence of Causal Closed Curves. We also derive the stability conditions for Friedmann Universe in context with scalar and tensor perturbations.Comment: 9 pages, 5 figures, references added, more details on the cosmological analysis included, results and conclusions unchanged, final version to appear in PR

    Excess of weight: is it a modifiable predictive and prognostic factor in locally advanced rectal cancer?

    Get PDF
    To evaluate the relationship between body mass index (BMI) and rates of treatment tolerance and clinical outcomes in patients with locally advanced rectal cancer treated with a multimodality approach. PATIENTS AND METHODS: This study was conducted on 56 patients with histologically proven rectal adenocarcinoma, staged T3-4, and/or node-positive tumor, which underwent intensified radiochemotherapy (RT-CHT) treatment before surgery. We calculated adiposity indices and analyzed their influence on treatment tolerance and clinical outcomes. RESULTS: Distribution of the 56 patients according to BMI was BMI < 25 kg/m2 (n = 19; 33.9%), BMI 25-29 kg/m2 (n = 29; 51.8%) and BMI ≥ 30 kg/m2 (n = 8; 14.3%). BMI had no significant influence on neo-adjuvant treatment-related toxicity. With a median follow-up of 23 months (range 11-47), the 2-year survival was 85.7%. We did not observe any significant difference among the three BMI categories for any of the outcomes. CONCLUSIONS: This study suggested no evident links between overweight and survival in patients with locally advanced rectal carcinoma treated with neo-adjuvant RT-CHT. Overweight patients tolerate treatment as normal-weight patients

    Cosmological perturbations of a perfect fluid and noncommutative variables

    Full text link
    We describe the linear cosmological perturbations of a perfect fluid at the level of an action, providing thus an alternative to the standard approach based only on the equations of motion. This action is suited not only to perfect fluids with a barotropic equation of state, but also to those for which the pressure depends on two thermodynamical variables. By quantizing the system we find that (1) some perturbation fields exhibit a noncommutativity quite analogous to the one observed for a charged particle moving in a strong magnetic field, (2) local curvature and pressure perturbations cannot be measured simultaneously, (3) ghosts appear if the null energy condition is violated.Comment: 4 pages, uses RevTeX. Title modified, references and comments added

    Modulation of galactic protons in the heliosphere during the unusual solar minimum of 2006 to 2009

    Full text link
    The last solar minimum activity period, and the consequent minimum modulation conditions for cosmic rays, was unusual. The highest levels of galactic protons were recorded at Earth in late 2009 in contrast to expectations. Proton spectra observed for 2006 to 2009 from the PAMELA cosmic ray detector on-board the Resurs-DK1 satellite are presented together with the solutions of a comprehensive numerical model for the solar modulation of cosmic rays. The model is used to determine what mechanisms were mainly responsible for the modulation of protons during this period, and why the observed spectrum for 2009 was the highest ever recorded. From mid-2006 until December 2009 we find that the spectra became significantly softer because increasingly more low energy protons had reached Earth. To simulate this effect, the rigidity dependence of the diffusion coefficients had to decrease significantly below ~3 GeV. The modulation minimum period of 2009 can thus be described as relatively more "diffusion dominated" than previous solar minima. However, we illustrate that drifts still had played a significant role but that the observable modulation effects were not as well correlated with the waviness of the heliospheric current sheet as before. Protons still experienced global gradient and curvature drifts as the heliospheric magnetic field had decreased significantly until the end of 2009, in contrast to the moderate decreases observed during previous minimum periods. We conclude that all modulation processes contributed to the observed increases in the proton spectra for this period, exhibiting an intriguing interplay of these major mechanisms

    Cosmological dynamics of fourth order gravity with a Gauss-Bonnet term

    Full text link
    We consider cosmological dynamics in fourth order gravity with both f(R)f(R) and Φ(G)\Phi(\mathcal {G}) correction to the Einstein gravity (G\mathcal{G} is the Gauss-Bonnet term). The particular case for which both terms are equally important on power-law solutions is described. These solutions and their stability are studied using the dynamical system approach. We also discuss condition of existence and stability of de Sitter solution in a more general situation of power-law ff and Φ\Phi.Comment: published version, references update
    • …
    corecore