7,851 research outputs found
Differential coupling of gibberellin responses by Rht-B1c suppressor alleles and Rht-B1b in wheat highlights a unique role for the DELLA N-terminus in dormancy
During the Green Revolution, substantial increases in wheat (Triticum aestivum) yields were realized, at least in part, through the introduction of the Reduced height (Rht)-B1b and Rht-D1b semi-dwarfing alleles. In contrast to Rht-B1b and Rht-D1b, the Rht-B1c allele is characterized by extreme dwarfism and exceptionally strong dormancy. Recently, 35 intragenic Rht-B1c suppressor alleles were created in the spring wheat cultivar Maringa, and termed overgrowth (ovg) alleles. Here, 14 ovg alleles with agronomically relevant plant heights were reproducibly classified into nine tall and five semi-dwarf alleles. These alleles differentially affected grain dormancy, internode elongation rate, and coleoptile and leaf lengths. The stability of these ovg effects was demonstrated for three ovg alleles in different genetic backgrounds and environments. Importantly, two semi-dwarf ovg alleles increased dormancy, which correlated with improved pre-harvest sprouting (PHS) resistance. Since no negative effects on grain yield or quality were observed, these semi-dwarf ovg alleles are valuable for breeding to achieve adequate height reduction and protection of grain quality in regions prone to PHS. Furthermore, this research highlights a unique role for the first 70 amino acids of the DELLA protein, encoded by the Rht-1 genes, in grain dormancy
The circumstellar disk, envelope, and bi-polar outflow of the Massive Young Stellar Object W33A
The Young Stellar Object (YSO) W33A is one of the best known examples of a
massive star still in the process of forming. Here we present Gemini North
ALTAIR/NIFS laser-guide star adaptive-optics assisted K-band integral-field
spectroscopy of W33A and its inner reflection nebula. In our data we make the
first detections of a rotationally-flattened outer envelope and fast bi-polar
jet of a massive YSO at near-infrared wavelengths. The predominant spectral
features observed are Br-gamma, H_2, and a combination of emission and
absorption from CO gas. We perform a 3-D spectro-astrometric analysis of the
line emission, the first study of its kind. We find that the object's Br-gamma
emission reveals evidence for a fast bi-polar jet on sub-milliarcsecond scales,
which is aligned with the larger-scale outflow. The hybrid CO features can be
explained as a combination of hot CO emission arising in a disk close to the
central star, while cold CO absorption originates in the cooler outer envelope.
Kinematic analysis of these features reveals that both structures are rotating,
and consistent with being aligned perpendicularly to both the ionised jet and
the large-scale outflow. Assuming Keplerian rotation, we find that the
circumstellar disk orbits a central mass of >10Msun, while the outer envelope
encloses a mass of ~15Msun. Our results suggest a scenario of a central star
accreting material from a circumstellar disk at the centre of a cool extended
rotating torus, while driving a fast bi-polar wind. These results therefore
provide strong supporting evidence for the hypothesis that the formation
mechanism for high-mass stars is qualitatively similar to that of low-mass
stars.Comment: 13 pages, 18 figs. Accepted for publication in MNRA
Dynamics of Annihilation II: Fluctuations of Global Quantities
We develop a theory for fluctuations and correlations in a gas evolving under
ballistic annihilation dynamics. Starting from the hierarchy of equations
governing the evolution of microscopic densities in phase space, we
subsequently restrict to a regime of spatial homogeneity, and obtain explicit
predictions for the fluctuations and time correlation of the total number of
particles, total linear momentum and total kinetic energy. Cross-correlations
between these quantities are worked out as well. These predictions are
successfully tested against Molecular Dynamics and Monte-Carlo simulations.
This provides strong support for the theoretical approach developed, including
the hydrodynamic treatment of the spectrum of the linearized Boltzmann
operator. This article is a companion paper to arXiv:0801.2299 and makes use of
the spectral analysis reported there.Comment: 19 page
Recommended from our members
A high-wavenumber boundary-element method for an acoustic scattering problem
In this paper we show stability and convergence for a novel Galerkin boundary element method approach to the impedance boundary value problem for the Helmholtz equation in a half-plane with piecewise constant boundary data. This problem models, for example, outdoor sound propagation over inhomogeneous flat terrain. To achieve a good approximation with a relatively low number of degrees of freedom we employ a graded mesh with smaller elements adjacent to discontinuities in impedance, and a special set of basis functions for the Galerkin method so that, on each element, the approximation space consists of polynomials (of degree ) multiplied by traces of plane waves on the boundary. In the case where the impedance is constant outside an interval , which only requires the discretization of , we show theoretically and experimentally that the error in computing the acoustic field on is , where is the number of degrees of freedom and is the wavenumber. This indicates that the proposed method is especially commendable for large intervals or a high wavenumber. In a final section we sketch how the same methodology extends to more general scattering problems
IRAS 22198+6336: Discovery of an Intermediate-Mass Hot Core
We present new SMA and PdBI observations of the intermediate-mass object IRAS
22198+6336 in the millimeter continuum and in several molecular line
transitions. The millimeter continuum emission reveals a strong and compact
source with a mass of around 5 Msun and with properties of Class 0 objects. CO
emission shows an outflow with a quadrupolar morphology centered on the
position of the dust condensation. The CO outflow emission seems to come from
two distinct outflows, one of them associated with SiO outflow emission. A
large set of molecular lines has been detected toward a compact dense core
clearly coincident with the compact millimeter source, and showing a velocity
gradient perpendicular to the outflow traced by CO and SiO. The chemically rich
spectrum and the rotational temperatures derived from CHCN and CHOH
(100-150 K) indicate that IRAS 22198+6336 is harbouring one the few
intermediate-mass hot cores known at present.Comment: Accepted for publication in The Astrophysical Journal Letters [5
pages, 4 figures, 1 table
On the heating of source of the Orion KL hot core
We present images of the J=10-9 rotational lines of HC3N in the vibrationally
excited levels 1v7, 1v6 and 1v5 of the hot core (HC) in Orion KL. The images
show that the spatial distribution and the size emission from the 1v7 and 1v5
levels are different. While the J=10-9 1v7 line has a size of 4''x 6'' and
peaks 1.1'' NE of the 3 mm continuum peak, the J=10--9 1v5 line emission is
unresolved (<3'') and peaks 1.3'' south of the 3 mm peak. This is a clear
indication that the HC is composed of condensations with very different
temperatures (170 K for the 1v7 peak and K for the 1v5 peak). The
temperature derived from the 1v7 and 1v5 lines increases with the projected
distance to the suspected main heating source I. Projection effects along the
line of sight could explain the temperature gradient as produced by source I.
However, the large luminosity required for source I, >5 10^5 Lsolar, to explain
the 1v5 line suggests that external heating by this source may not dominate the
heating of the HC. Simple model calculations of the vibrationally excited
emission indicate that the HC can be internally heated by a source with a
luminosity of 10^5 Lsolar, located 1.2'' SW of the 1v5 line peak (1.8'' south
of source I). We also report the first detection of high-velocity gas from
vibrationally excited HC3N emission. Based on excitation arguments we conclude
that the main heating source is also driving the molecular outflow. We
speculate that all the data presented in this letter and the IR images are
consistent with a young massive protostar embedded in an edge-on disk.Comment: 13 pages, 3 figures, To be published in Ap.J. Letter
- …