4,112 research outputs found
The Rhombi-Chain Bose-Hubbard Model: geometric frustration and interactions
We explore the effects of geometric frustration within a one-dimensional
Bose-Hubbard model using a chain of rhombi subject to a magnetic flux. The
competition of tunnelling, self-interaction and magnetic flux gives rise to the
emergence of a pair-superfluid (pair-Luttinger liquid) phase besides the more
conventional Mott-insulator and superfluid (Luttinger liquid) phases. We
compute the complete phase diagram of the model by identifying characteristic
properties of the pair-Luttinger liquid phase such as pair correlation
functions and structure factors and find that the pair-Luttinger liquid phase
is very sensitive to changes away from perfect frustration (half-flux). We
provide some proposals to make the model more resilient to variants away from
perfect frustration. We also study the bipartite entanglement properties of the
chain. We discover that, while the scaling of the block entropy pair-superfluid
and of the single-particle superfluid leads to the same central charge, the
properties of the low-lying entanglement spectrum levels reveal their
fundamental difference.Comment: 12 pages, 11 figure
Uptake of purines in <i>Plasmodium falciparum</i>-infected human erythrocytes is mostly mediated by the human Equilibrative Nucleoside Transporter and the human Facilitative Nucleobase Transporter
<b>Background</b>: Plasmodium parasites are unable to synthesize purines de novo and have to salvage them from the host. Due to this limitation in the parasite, purine transporters have been an area of focus in the search for anti-malarial drugs. Although the uptake of purines through the human equilibrative nucleoside transporter (hENT1), the human facilitative nucleobase transporter (hFNT1) and the parasite-induced new permeation pathway (NPP) has been studied, no information appears to exist on the relative contribution of these three transporters to the uptake of adenosine and hypoxanthine. Using the appropriate transporter inhibitors, the role of each of these salvage pathways to the overall purine transport in intraerythrocytic Plasmodium falciparum was systematically investigated.
<b>Methods</b>: The transport of adenosine, hypoxanthine and adenine into uninfected and P. falciparum-infected human erythrocytes was investigated in the presence or absence of classical inhibitors of the hFNT1, hENT1 and NPP. The effective inhibition of the various transporters by the classical inhibitors was verified using appropriate known substrates. The ability of high concentration of unlabelled substrates to saturate these transporters was also studied.
<b>Results</b>: Transport of exogenous purine into infected or uninfected erythrocytes occurred primarily through saturable transporters rather than through the NPP. Hypoxanthine and adenine appeared to enter erythrocytes mainly through the hFNT1 nucleobase transporter whereas adenosine entered predominantly through the hENT1 nucleoside transporter. The rate of purine uptake was approximately doubled in infected cells compared to uninfected erythrocytes. In addition, it was found that the rate of adenosine uptake was considerably higher than the rate of hypoxanthine uptake in infected human red blood cells (RBC). It was also demonstrated that furosemide inhibited the transport of purine bases through hFNT1.
<b>Conclusion</b>: Collectively, the data obtained in this study clearly show that the endogenous host erythrocyte transporters hENT1 and hFNT1, rather than the NPP, are the major route of entry of purine into parasitized RBC. Inhibitors of hENT1 and hFNT1, as well as the NPP, should be considered in the development of anti-malarials targeted to purine transport
Entanglement scaling at first order phase transitions
First order quantum phase transitions (1QPTs) are signaled, in the
thermodynamic limit, by discontinuous changes in the ground state properties.
These discontinuities affect expectation values of observables, including
spatial correlations. When a 1QPT is crossed in the vicinity of a second order
one (2QPT), due to the correlation length divergence of the latter, the
corresponding ground state is modified and it becomes increasingly difficult to
determine the order of the transition when the size of the system is finite.
Here we show that, in such situations, it is possible to apply finite size
scaling to entanglement measures, as it has recently been done for the order
parameters and the energy gap, in order to recover the correct thermodynamic
limit. Such a finite size scaling can unambigously discriminate between first
and second order phase transitions in the vicinity of multricritical points
even when the singularities displayed by entanglement measures lead to
controversial results
On best rank one approximation of tensors
In this paper we suggest a new algorithm for the computation of a best rank
one approximation of tensors, called alternating singular value decomposition.
This method is based on the computation of maximal singular values and the
corresponding singular vectors of matrices. We also introduce a modification
for this method and the alternating least squares method, which ensures that
alternating iterations will always converge to a semi-maximal point. (A
critical point in several vector variables is semi-maximal if it is maximal
with respect to each vector variable, while other vector variables are kept
fixed.) We present several numerical examples that illustrate the computational
performance of the new method in comparison to the alternating least square
method.Comment: 17 pages and 6 figure
Eigenvectors of tensors and algorithms for Waring decomposition
A Waring decomposition of a (homogeneous) polynomial f is a minimal sum of
powers of linear forms expressing f. Under certain conditions, such a
decomposition is unique. We discuss some algorithms to compute the Waring
decomposition, which are linked to the equation of certain secant varieties and
to eigenvectors of tensors. In particular we explicitly decompose a general
cubic polynomial in three variables as the sum of five cubes (Sylvester
Pentahedral Theorem).Comment: 32 pages; three Macaulay2 files as ancillary files. Revised with
referee's suggestions. Accepted JS
Regenerative Medicine Strategies for Treating Neurogenic Bladder
Neurogenic bladder is a general term encompassing various neurologic dysfunctions of the bladder and the external urethral sphincter. These can be caused by damage or disease. Therapeutic management options can be conservative, minimally invasive, or surgical. The current standard for surgical management is bladder augmentation using intestinal segments. However, because intestinal tissue possesses different functional characteristics than bladder tissue, numerous complications can ensue, including excess mucus production, urinary stone formation, and malignancy. As a result, investigators have sought after alternative solutions. Tissue engineering is a scientific field that uses combinations of cells and biomaterials to encourage regeneration of new, healthy tissue and offers an alternative approach for the replacement of lost or deficient organs, including the bladder. Promising results using tissue-engineered bladder have already been obtained in children with neurogenic bladder caused by myelomeningocele. Human clinical trials, governed by the Food and Drug Administration, are ongoing in the United States in both children and adults to further evaluate the safety and efficacy of this technology. This review will introduce the principles of tissue engineering and discuss how it can be used to treat refractory cases of neurogenic bladder
An improved and highly sensitive microfluorimetric method for assessing susceptibility of Plasmodium falciparum to antimalarial drugs in vitro
BACKGROUND: The standard in vitro protocol currently in use for drug testing against Plasmodium falciparum, based on the incorporation of the purine [(3)H]-hypoxanthine, has two serious drawbacks. Firstly it is unsuitable for the testing of drugs that directly or indirectly impact on purine salvage or metabolism. Secondly, it relies on the use of expensive radiolabelled material, with added issues concerning detection, storage and waste disposal that make it unsuitable for use in many disease-endemic areas. Recently, the use of fluorochromes has been suggested as an alternative, but quenching of the fluorescence signal by the haemoglobin present in cultures of Plasmodium falciparum-infected erythrocytes severely limits the usefulness of this approach. METHODS: In order to resolve this problem, a new PicoGreen(®)-based procedure has been developed which incorporates additional steps to remove the interfering haemoglobin. The 50% inhibitory concentration (IC(50)) values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 were determined using the new protocol. RESULTS: The IC(50 )values of chloroquine and pyrimethamine against P. falciparum laboratory lines 3D7 and K1 determined with the new fluorescence-based protocol were statistically identical to those obtained using the traditional (3)H-hypoxanthine incorporation method, and consistent with literature values. CONCLUSION: The new method proved to be accurate, reproducible and sensitive, and has the advantage of being non-radioactive. The improved PicoGreen(® )method has the potential to replace traditional in vitro drug resistance assay techniques
Nonlinear Dynamics of the Perceived Pitch of Complex Sounds
We apply results from nonlinear dynamics to an old problem in acoustical
physics: the mechanism of the perception of the pitch of sounds, especially the
sounds known as complex tones that are important for music and speech
intelligibility
Development of reverse-transcription PCR techniques to analyse the density and sex ratio of gametocytes in genetically diverse Plasmodium chabaudi infections
We have developed cross-genotype and genotype-specific quantitative reverse-transcription PCR (qRT-PCR) assays to detect and quantify the number of parasites, transmission stages (gametocytes) and male gametocytes in blood stage Plasmodium chabaudi infections. Our cross-genotype assays are reliable, repeatable and generate counts that correlate strongly (R(2)s > 90%) with counts expected from blood smears. Our genotype-specific assays can distinguish and quantify different stages of genetically distinct parasite clones (genotypes) in mixed infections and are as sensitive as our cross-genotype assays. Using these assays we show that gametocyte density and gametocyte sex ratios vary during infections for two genetically distinct parasite lines (genotypes) and present the first data to reveal how sex ratio is affected when each genotype experiences competition in mixed-genotype infections. Successful infection of mosquito vectors depends on both gametocyte density and their sex ratio and we discuss the implications of competition in genetically diverse infections for transmission success
- …