7,079 research outputs found
Dynamics of the entanglement spectrum in spin chains
We study the dynamics of the entanglement spectrum, that is the time
evolution of the eigenvalues of the reduced density matrices after a
bipartition of a one-dimensional spin chain. Starting from the ground state of
an initial Hamiltonian, the state of the system is evolved in time with a new
Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the
system Hamiltonian across a quantum phase transition. We analyse the Ising
model that can be exactly solved and the XXZ for which we employ the
time-dependent density matrix renormalisation group algorithm. Our results show
once more a connection between the Schmidt gap, i.e. the difference of the two
largest eigenvalues of the reduced density matrix and order parameters, in this
case the spontaneous magnetisation.Comment: 16 pages, 8 figures, comments are welcome! Version published in JSTAT
special issue on "Quantum Entanglement In Condensed Matter Physics
Probing magnetic order in ultracold lattice gases
A forthcoming challenge in ultracold lattice gases is the simulation of
quantum magnetism. That involves both the preparation of the lattice atomic gas
in the desired spin state and the probing of the state. Here we demonstrate how
a probing scheme based on atom-light interfaces gives access to the order
parameters of nontrivial quantum magnetic phases, allowing us to characterize
univocally strongly correlated magnetic systems produced in ultracold gases.
This method, which is also nondemolishing, yields spatially resolved spin
correlations and can be applied to bosons or fermions. As a proof of principle,
we apply this method to detect the complete phase diagram displayed by a chain
of (rotationally invariant) spin-1 bosons.Comment: published versio
Entanglement control in hybrid optomechanical systems
We demonstrate the control of entanglement in a hybrid optomechanical system
comprising an optical cavity with a mechanical end-mirror and an intracavity
Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic
experimental conditions) is shown to induce an almost sixfold increase of the
atom-mirror entanglement and to be responsible for interesting dynamics between
such mesoscopic systems. In order to assess the advantages offered by the
proposed control technique, we compare the time-dependent dynamics of the
system under constant pumping with the evolution due to the modulated laser
light.Comment: Published versio
Increasing entanglement through engineered disorder in the random Ising chain
The ground state entanglement entropy between block of sites in the random
Ising chain is studied by means of the Von Neumann entropy. We show that in
presence of strong correlations between the disordered couplings and local
magnetic fields the entanglement increases and becomes larger than in the
ordered case. The different behavior with respect to the uncorrelated
disordered model is due to the drastic change of the ground state properties.
The same result holds also for the random 3-state quantum Potts model.Comment: 4 pages, published version, a few typos correcte
Measuring work and heat in ultracold quantum gases
We propose a feasible experimental scheme to direct measure heat and work in
cold atomic setups. The method is based on a recent proposal which shows that
work is a positive operator valued measure (POVM). In the present contribution,
we demonstrate that the interaction between the atoms and the light
polarisation of a probe laser allows us to implement such POVM. In this way the
work done on or extracted from the atoms after a given process is encoded in
the light quadrature that can be measured with a standard homodyne detection.
The protocol allows one to verify fluctuation theorems and study properties of
the non-unitary dynamics of a given thermodynamic process.Comment: Published version in the Focus Issue on "Quantum Thermodynamics
Entanglement scaling at first order phase transitions
First order quantum phase transitions (1QPTs) are signaled, in the
thermodynamic limit, by discontinuous changes in the ground state properties.
These discontinuities affect expectation values of observables, including
spatial correlations. When a 1QPT is crossed in the vicinity of a second order
one (2QPT), due to the correlation length divergence of the latter, the
corresponding ground state is modified and it becomes increasingly difficult to
determine the order of the transition when the size of the system is finite.
Here we show that, in such situations, it is possible to apply finite size
scaling to entanglement measures, as it has recently been done for the order
parameters and the energy gap, in order to recover the correct thermodynamic
limit. Such a finite size scaling can unambigously discriminate between first
and second order phase transitions in the vicinity of multricritical points
even when the singularities displayed by entanglement measures lead to
controversial results
Density Matrix Renormalization Group for Dummies
We describe the Density Matrix Renormalization Group algorithms for time
dependent and time independent Hamiltonians. This paper is a brief but
comprehensive introduction to the subject for anyone willing to enter in the
field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the
code can be found at http://qti.sns.it/dmrg/phome.htm
Non-Gaussian distribution of collective operators in quantum spin chains
We numerically analyse the behavior of the full distribution of collective
observables in quantum spin chains. While most of previous studies of quantum
critical phenomena are limited to the first moments, here we demonstrate how
quantum fluctuations at criticality lead to highly non-Gaussian distributions
thus violating the central limit theorem. Interestingly, we show that the
distributions for different system sizes collapse after scaling on the same
curve for a wide range of transitions: first and second order quantum
transitions and transitions of the Berezinskii-Kosterlitz-Thouless type. We
propose and carefully analyse the feasibility of an experimental reconstruction
of the distribution using light-matter interfaces for atoms in optical lattices
or in optical resonators.Comment: 15 pages, 5 figures; last version close to published versio
Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements
We propose a scheme for the detection of quantum phase transitions in the 1D
Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the
non-demolition measurement technique of quantum polarization spectroscopy. We
use collective measurements of the effective total angular momentum of a
particular spatial mode to characterise the Mott insulator to superfluid phase
transition in the BH model, and the transition to a density wave state in the
EBH model. We extend the application of collective measurements to the ground
states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio
- …