7,079 research outputs found

    Dynamics of the entanglement spectrum in spin chains

    Full text link
    We study the dynamics of the entanglement spectrum, that is the time evolution of the eigenvalues of the reduced density matrices after a bipartition of a one-dimensional spin chain. Starting from the ground state of an initial Hamiltonian, the state of the system is evolved in time with a new Hamiltonian. We consider both instantaneous and quasi adiabatic quenches of the system Hamiltonian across a quantum phase transition. We analyse the Ising model that can be exactly solved and the XXZ for which we employ the time-dependent density matrix renormalisation group algorithm. Our results show once more a connection between the Schmidt gap, i.e. the difference of the two largest eigenvalues of the reduced density matrix and order parameters, in this case the spontaneous magnetisation.Comment: 16 pages, 8 figures, comments are welcome! Version published in JSTAT special issue on "Quantum Entanglement In Condensed Matter Physics

    Probing magnetic order in ultracold lattice gases

    Full text link
    A forthcoming challenge in ultracold lattice gases is the simulation of quantum magnetism. That involves both the preparation of the lattice atomic gas in the desired spin state and the probing of the state. Here we demonstrate how a probing scheme based on atom-light interfaces gives access to the order parameters of nontrivial quantum magnetic phases, allowing us to characterize univocally strongly correlated magnetic systems produced in ultracold gases. This method, which is also nondemolishing, yields spatially resolved spin correlations and can be applied to bosons or fermions. As a proof of principle, we apply this method to detect the complete phase diagram displayed by a chain of (rotationally invariant) spin-1 bosons.Comment: published versio

    Entanglement control in hybrid optomechanical systems

    Get PDF
    We demonstrate the control of entanglement in a hybrid optomechanical system comprising an optical cavity with a mechanical end-mirror and an intracavity Bose-Einstein condensate (BEC). Pulsed laser light (tuned within realistic experimental conditions) is shown to induce an almost sixfold increase of the atom-mirror entanglement and to be responsible for interesting dynamics between such mesoscopic systems. In order to assess the advantages offered by the proposed control technique, we compare the time-dependent dynamics of the system under constant pumping with the evolution due to the modulated laser light.Comment: Published versio

    Increasing entanglement through engineered disorder in the random Ising chain

    Full text link
    The ground state entanglement entropy between block of sites in the random Ising chain is studied by means of the Von Neumann entropy. We show that in presence of strong correlations between the disordered couplings and local magnetic fields the entanglement increases and becomes larger than in the ordered case. The different behavior with respect to the uncorrelated disordered model is due to the drastic change of the ground state properties. The same result holds also for the random 3-state quantum Potts model.Comment: 4 pages, published version, a few typos correcte

    Measuring work and heat in ultracold quantum gases

    Get PDF
    We propose a feasible experimental scheme to direct measure heat and work in cold atomic setups. The method is based on a recent proposal which shows that work is a positive operator valued measure (POVM). In the present contribution, we demonstrate that the interaction between the atoms and the light polarisation of a probe laser allows us to implement such POVM. In this way the work done on or extracted from the atoms after a given process is encoded in the light quadrature that can be measured with a standard homodyne detection. The protocol allows one to verify fluctuation theorems and study properties of the non-unitary dynamics of a given thermodynamic process.Comment: Published version in the Focus Issue on "Quantum Thermodynamics

    Entanglement scaling at first order phase transitions

    Get PDF
    First order quantum phase transitions (1QPTs) are signaled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one (2QPT), due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit. Such a finite size scaling can unambigously discriminate between first and second order phase transitions in the vicinity of multricritical points even when the singularities displayed by entanglement measures lead to controversial results

    Density Matrix Renormalization Group for Dummies

    Get PDF
    We describe the Density Matrix Renormalization Group algorithms for time dependent and time independent Hamiltonians. This paper is a brief but comprehensive introduction to the subject for anyone willing to enter in the field or write the program source code from scratch.Comment: 29 pages, 9 figures. Published version. An open source version of the code can be found at http://qti.sns.it/dmrg/phome.htm

    Non-Gaussian distribution of collective operators in quantum spin chains

    Get PDF
    We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions thus violating the central limit theorem. Interestingly, we show that the distributions for different system sizes collapse after scaling on the same curve for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii-Kosterlitz-Thouless type. We propose and carefully analyse the feasibility of an experimental reconstruction of the distribution using light-matter interfaces for atoms in optical lattices or in optical resonators.Comment: 15 pages, 5 figures; last version close to published versio

    Characterization of Bose-Hubbard Models with Quantum Non-demolition Measurements

    Get PDF
    We propose a scheme for the detection of quantum phase transitions in the 1D Bose-Hubbard (BH) and 1D Extended Bose-Hubbard (EBH) models, using the non-demolition measurement technique of quantum polarization spectroscopy. We use collective measurements of the effective total angular momentum of a particular spatial mode to characterise the Mott insulator to superfluid phase transition in the BH model, and the transition to a density wave state in the EBH model. We extend the application of collective measurements to the ground states at various deformations of a super-lattice potential.Comment: 8 pages, 9 figures; published version in PRA, Editors' Suggestio
    • …
    corecore