24,060 research outputs found

    Design of fibre reinforced PV concepts for building integrated applications

    Get PDF
    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a broad range of the solar spectrum while the material properties and integral production processes create possibilities for novel product concepts with embedded PV technology. To explore such possibilities, innovative design methods were used to design novel PV product concepts for applications in the build environment.\ud In our paper three conceptual designs are presented; (1) a thin film module with an adjoining interconnection system functioning as structural element for geodetic roofing structures, (2) a PV lamella with single-axis tracking utilizing a linear concentration effect caused by the geometry of the product and the materials applied, and (3) a prepreg PV-material which allows for easy shaping during the production of PV modules with complex geometries. Each concept employs a specific PV technology and demonstrates a possible application aimed at a specific market. In this way we show the potential of integration of PV technology in fibre reinforced composites. The paper will be illustrated by concept renderings

    N=8 matter coupled AdS_3 supergravities

    Full text link
    Following the recent construction of maximal (N=16) gauged supergravity in three dimensions, we derive gauged D=3, N=8 supergravities in three dimensions as deformations of the corresponding ungauged theories with scalar manifolds SO(8,n)/(SO(8)x SO(n)). As a special case, we recover the N=(4,4) theories with local SO(4) = SO(3)_L x SO(3)_R, which reproduce the symmetries and massless spectrum of D=6, N=(2,0) supergravity compactified on AdS_3 x S^3.Comment: 11 pages, LaTeX2

    Integrals over Products of Distributions and Coordinate Independence of Zero-Temperature Path Integrals

    Get PDF
    In perturbative calculations of quantum-statistical zero-temperature path integrals in curvilinear coordinates one encounters Feynman diagrams involving multiple temporal integrals over products of distributions, which are mathematically undefined. In addition, there are terms proportional to powers of Dirac delta-functions at the origin coming from the measure of path integration. We give simple rules for integrating products of distributions in such a way that the results ensure coordinate independence of the path integrals. The rules are derived by using equations of motion and partial integration, while keeping track of certain minimal features originating in the unique definition of all singular integrals in 1ϵ1 - \epsilon dimensions. Our rules yield the same results as the much more cumbersome calculations in 1- epsilon dimensions where the limit epsilon --> 0 is taken at the end. They also agree with the rules found in an independent treatment on a finite time interval.Comment: Author Information under http://www.physik.fu-berlin.de/~kleinert/institution.html . Latest update of paper (including all PS fonts) at http://www.physik.fu-berlin.de/~kleinert/33

    A numerical study of a method for measuring the effective in situ sound absorption coefficient

    Get PDF
    The accuracy of a method [Wijnant et al., “Development and applica- tion of a new method for the in-situ measurement of sound absorption”, ISMA 31, Leuven, Belgium (2010).], for measurement of the effective area-averaged in situ sound absorption coefficient is investigated. Based on a local plane wave assump- tion, this method can be applied to sound fields for which a model is not available. Investigations were carried out by means of finite element simulations for a typical case. The results show that the method is a promising method for determining the effective area-averaged in situ sound absorption coefficient in complex sound fields

    Studies on tableting properties of lactose. Part III. The consolidation behaviour of sieve fractions of crystalline a-lactose\ud monohydrate

    Get PDF
    The consolidation and compaction behaviour of sieve fractions of crystalline α-lactose monohydrate were studied. From mercury porosimetry measurements tablet pore surface areas were derived. At a certain compaction load it appeared that tablets compressed from small particles were generally stronger and showed a larger surface area than compacts prepared from coarse sieve fractions. By plotting compact strength against pore surface area, a unique linear relationship was obtained. From these results it can be concluded that the actual tablet surface area, being a function of both the initial particle size and applied compaction pressure, is responsible for the compact strength
    corecore