3 research outputs found
Monitoring Millennium Development Goals in Brazilian municipalities: challenges to be met in facing up to iniquities Monitorando Objetivos de Desenvolvimento do Milênio em municÃpios brasileiros: desafios ao enfrentamento das iniquidades
The Healthy Cities and Agenda 21 programs improve living and health conditions and affect social and economic determinants of health. The Millennium Development Goals (MDG) indicators can be used to assess the impact of social agendas. A data search was carried out for the period 1997 to 2006 to obtain 48 indicators proposed by the United Nations and a further 74 proposed by the technical group for the MDGin Brazil. There is a scarcity of studies concerned with assessing the MDG at the municipal level. Data from Brazilian health information systems are not always consistent or accurate for municipalities. The lack of availability and reliable data led to the substitution of some indicators. The information systems did not always provide annual data; national household surveys could not be disaggregated at the municipal level and there were also modifications on conceptual definitions over time. As a result, the project created an alternative list with 29 indicators. MDG monitoring at the local community can be important to measure the performance of actions toward improvements in quality of life and social iniquities
Studies on the alcoholysis of poly(3-hydroxybutyrate) and the synthesis of PHB-b-PLA block copolymer for the preparation of PLA/PHB-b-PLA blends
[[abstract]]Molecular interactions, rheological behaviors and microstructures of 1,3:2,4-dibenzylidene-d-sorbitol (DBS)/poly(ethylene glycol) (PEG) organogel-inorganic silica hybrid materials are discussed in this study. DBS can dissolve in low-molecular-weight PEG to form organogels. The self-assembly behavior of these organogels was significantly influenced by the addition of the inorganic silica. The Ï€ interactions between the phenyl rings of DBS were not influenced by silica addition; however, the addition of silica affected the intermolecular hydrogen bonding of DBS, which interacts with PEG. The silica more likely interacted with PEG and decreased the intermolecular interactions between DBS and PEG, which resulted in an increase in the self-assembly of DBS. Therefore, the gel formation time and gel dissolution temperature increased as the amount of silica increased, as determined by dynamic rheological instruments. In addition, these organogel systems were all found to exhibit spherulite-like textures under polarized optical microscopy. The addition of silica and the increased DBS self-assembly in PEG resulted in a higher self-assembly temperature of the organogels. The higher temperature resulted in the presence of fewer nucleation sites and larger spherulite sizes in these systems. Small-angle X-ray scattering results demonstrated lamellar packing in these spherulite-like morphologies. Furthermore, the organogels with silica affected the intermolecular hydrogen bonding between DBS and PEG to facilitate the self-assembly of DBS, which resulted in increased diameter sizes of the DBS nanofibrils, as observed using scanning electron microscopy. It was observed that the silica was entrapped within these nanofibrillar networks.[[notice]]補æ£å®Œ