21 research outputs found

    Rituximab therapy for juvenile-onset systemic lupus erythematosus

    Get PDF
    Rituximab (RTX), an anti-CD20 monoclonal antibody, has been proposed for use in the therapy of systemic lupus erythematosus (SLE). We present the initial long-term experience of the safety and efficacy of rituximab for treatment of SLE in children. Eighteen patients (mean age 14 ± 3 years) with severe SLE were treated with rituximab after demonstrating resistance or toxicity to conventional regimens. There was a predominance of female (16/18) and ethnic African (13/18) patients. All had lupus nephritis [World Health Organization (WHO) classes 3–5] and systemic manifestations of vasculitis. Clinical disease activity of the SLE was scored with the SLE-disease activity index 2K (SLEDAI-2K). Patients were followed-up for an average of 3.0 ± 1.3 years (range 0.5 to 4.8 years). B-cell depletion occurred within 2 weeks in all patients and persisted for up to 1 year in some. Clinical activity scores, double-stranded DNA (dsDNA) antibodies, renal function and proteinuria [urine protein to creatinine ratio (Upr/cr)] improved in 93% of the patients. Five patients required multiple courses of RTX for relapse, with B-cell repopulation. One died of infectious endocarditis related to severe immunosuppression. In conclusion, our data support the efficacy of rituximab as adjunctive treatment for SLE in children. Although rituximab was well tolerated by the majority of patients, randomized controlled trials are required to establish its long-term safety and efficacy

    Scaling up genetic circuit design for cellular computing:advances and prospects

    Get PDF

    Biomimetic materials assembled on a photovoltaic cell as a novel biosensing approach to cancer biomarker detection

    No full text
    Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-27884-2.This work describes for the first time the integration of Dye Sensitized Solar Cell (DSSC) technology in biosensors and biomimetic materials, opening doors towards a new dimension of autonomous screening devices that may be used in point-of-care, with zero-power requirements. DSSCs are fabricated with a counter electrode (CE) of polypyrrole (PPy) that was made responsive to a specific protein by biomimetic material (BM) technology. Carcinogenic embryonic antigen (CEA) was selected as target protein. The resulting BM-PPy film acted as biomimetic artificial antibody for CEA. Rebinding of CEA into this film changed its intrinsic electrical properties and the subsequent electrical output of the DSSC using it as CE. The quantity of CEA in solution was deduced by I-V and electrochemical impedance spesctroscopy (EIS). Linear responses to CEA were observed down to 0.25pg/mL, with 0.13pg/mL detection limit. Control films of PPy (prepared without CEA in the electropolymerization step) confirmed the ability of the BM material to recognize the target protein. Accurate results were obtained in the analysis of urine samples. Further developments into this ground-breaking self-powered biosensor will display a huge impact in point-to-care medical applications, which may be extended to other fields of knowledge.The authors acknowledge the financial support of FP7 and European Research Council though the Starting Grant, ERC-StG-3P’s/2012, GA 311086 (to MGF Sales).info:eu-repo/semantics/publishedVersio
    corecore